BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15184660)

  • 1. Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy.
    Chan F; Bradley A; Wensel TG; Wilson JH
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):9109-14. PubMed ID: 15184660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mislocalization and degradation of human P23H-rhodopsin-GFP in a knockin mouse model of retinitis pigmentosa.
    Price BA; Sandoval IM; Chan F; Simons DL; Wu SM; Wensel TG; Wilson JH
    Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9728-36. PubMed ID: 22110080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodopsin-EGFP knock-ins for imaging quantal gene alterations.
    Wensel TG; Gross AK; Chan F; Sykoudis K; Wilson JH
    Vision Res; 2005 Dec; 45(28):3445-53. PubMed ID: 16139321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa.
    Liang FQ; Aleman TS; Dejneka NS; Dudus L; Fisher KJ; Maguire AM; Jacobson SG; Bennett J
    Mol Ther; 2001 Nov; 4(5):461-72. PubMed ID: 11708883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype.
    Han Z; Banworth MJ; Makkia R; Conley SM; Al-Ubaidi MR; Cooper MJ; Naash MI
    FASEB J; 2015 Jun; 29(6):2535-44. PubMed ID: 25713057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene therapy to rescue retinal degeneration caused by mutations in rhodopsin.
    Rossmiller BP; Ryals RC; Lewin AS
    Methods Mol Biol; 2015; 1271():391-410. PubMed ID: 25697537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Müller glia express rhodopsin in a mouse model of inherited retinal degeneration.
    Goel M; Dhingra NK
    Neuroscience; 2012 Dec; 225():152-61. PubMed ID: 22967839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA).
    Pang JJ; Chang B; Hawes NL; Hurd RE; Davisson MT; Li J; Noorwez SM; Malhotra R; McDowell JH; Kaushal S; Hauswirth WW; Nusinowitz S; Thompson DA; Heckenlively JR
    Mol Vis; 2005 Feb; 11():152-62. PubMed ID: 15765048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse.
    Liang FQ; Dejneka NS; Cohen DR; Krasnoperova NV; Lem J; Maguire AM; Dudus L; Fisher KJ; Bennett J
    Mol Ther; 2001 Feb; 3(2):241-8. PubMed ID: 11237681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice.
    Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T
    Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodopsin promoter-EGFP fusion transgene expression in photoreceptor neurons of retina and pineal complex in mice.
    Ichsan AM; Kato I; Yoshida T; Takasawa K; Hayasaka S; Hiraga K
    Neurosci Lett; 2005 May; 379(2):138-43. PubMed ID: 15823431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa.
    Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Biel M; Mühlfriedel R; Michalakis S
    Hum Mol Genet; 2012 Oct; 21(20):4486-96. PubMed ID: 22802073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of retina specific expression of rhodopsin gene in vertebrates.
    Zhang T; Tan YH; Fu J; Lui D; Ning Y; Jirik FR; Brenner S; Venkatesh B
    Gene; 2003 Aug; 313():189-200. PubMed ID: 12957390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear trafficking of photoreceptor protein crx: the targeting sequence and pathologic implications.
    Fei Y; Hughes TE
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2849-56. PubMed ID: 10967037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa.
    Cideciyan AV; Jacobson SG; Aleman TS; Gu D; Pearce-Kelling SE; Sumaroka A; Acland GM; Aguirre GD
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5233-8. PubMed ID: 15784735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa.
    Li ZY; Wong F; Chang JH; Possin DE; Hao Y; Petters RM; Milam AH
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):808-19. PubMed ID: 9538889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abrupt onset of mutations in a developmentally regulated gene during terminal differentiation of post-mitotic photoreceptor neurons in mice.
    Sandoval IM; Price BA; Gross AK; Chan F; Sammons JD; Wilson JH; Wensel TG
    PLoS One; 2014; 9(9):e108135. PubMed ID: 25264759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.