BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15185133)

  • 21. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center.
    García-Borrón JC; Solano F
    Pigment Cell Res; 2002 Jun; 15(3):162-73. PubMed ID: 12028580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity.
    Gülzow J; Hörner G; Strauch P; Stritt A; Irran E; Grohmann A
    Chemistry; 2017 May; 23(29):7009-7023. PubMed ID: 28094884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations.
    Alijanianzadeh M; Saboury AA; Ganjali MR; Hadi-Alijanvand H; Moosavi-Movahedi AA
    J Biomol Struct Dyn; 2012; 30(4):448-59. PubMed ID: 22686596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.
    Solem E; Tuczek F; Decker H
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dinuclear copper complexes with imidazole derivative ligands: a theoretical study related to catechol oxidase activity.
    Martínez A; Membrillo I; Ugalde-Saldívar VM; Gasque L
    J Phys Chem B; 2012 Jul; 116(28):8038-44. PubMed ID: 22726110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catechol oxidase - structure and activity.
    Eicken C; Krebs B; Sacchettini JC
    Curr Opin Struct Biol; 1999 Dec; 9(6):677-83. PubMed ID: 10607672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases.
    Siegbahn PE; Haeffner F
    J Am Chem Soc; 2004 Jul; 126(29):8919-32. PubMed ID: 15264822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the Bridging Ligand in the Active Site of Tyrosinase.
    Zou C; Huang W; Zhao G; Wan X; Hu X; Jin Y; Li J; Liu J
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29143758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and catalytic studies of structural and functional models of the catechol oxidase enzyme.
    Terán A; Jaafar A; Sánchez-Peláez AE; Torralba MC; Gutiérrez Á
    J Biol Inorg Chem; 2020 Jun; 25(4):671-683. PubMed ID: 32367388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino-Ligand-Coordinated Dicopper Active Sites Enable Catechol Oxidase-Like Activity for Chiral Recognition and Catalysis.
    Sha M; Rao L; Xu W; Qin Y; Su R; Wu Y; Fang Q; Wang H; Cui X; Zheng L; Gu W; Zhu C
    Nano Lett; 2023 Jan; 23(2):701-709. PubMed ID: 36598260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic models of the active site of catechol oxidase: mechanistic studies.
    Koval IA; Gamez P; Belle C; Selmeczi K; Reedijk J
    Chem Soc Rev; 2006 Sep; 35(9):814-40. PubMed ID: 16936929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaffolded amino acids as a close structural mimic of type-3 copper binding sites.
    Albada HB; Soulimani F; Weckhuysen BM; Liskamp RM
    Chem Commun (Camb); 2007 Dec; (46):4895-7. PubMed ID: 18361361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurospora tyrosinase: structural, spectroscopic and catalytic properties.
    Lerch K
    Mol Cell Biochem; 1983; 52(2):125-38. PubMed ID: 6308414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The involvement of histidine at the active site of Harding-Passey mouse melanoma tyrosinase.
    Martínez JH; Solano F; García-Borrón JC; Iborra JL; Lozano JA
    Biochem Int; 1985 Nov; 11(5):729-38. PubMed ID: 3937527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histidine at the active site of Neurospora tyrosinase.
    Pfiffner E; Lerch K
    Biochemistry; 1981 Oct; 20(21):6029-35. PubMed ID: 6458322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catecholase activity of a copper(II) complex with a macrocyclic ligand: unraveling catalytic mechanisms.
    Koval IA; Selmeczi K; Belle C; Philouze C; Saint-Aman E; Gautier-Luneau I; Schuitema AM; van Vliet M; Gamez P; Roubeau O; Lüken M; Krebs B; Lutz M; Spek AL; Pierre JL; Reedijk J
    Chemistry; 2006 Aug; 12(23):6138-50. PubMed ID: 16832797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alzheimer's disease related copper(II)- beta-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities.
    da Silva GF; Ming LJ
    Angew Chem Int Ed Engl; 2005 Aug; 44(34):5501-4. PubMed ID: 16052638
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.