These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 15186132)
1. Reduction of acrylamide uptake by dietary proteins in a caco-2 gut model. Schabacker J; Schwend T; Wink M J Agric Food Chem; 2004 Jun; 52(12):4021-5. PubMed ID: 15186132 [TBL] [Abstract][Full Text] [Related]
2. Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion. Liu CS; Glahn RP; Liu RH J Agric Food Chem; 2004 Jun; 52(13):4330-7. PubMed ID: 15212488 [TBL] [Abstract][Full Text] [Related]
3. Uptake of S-(3-amino-3-oxopropyl)-cysteine by Caco-2 cells. Schwend T; Schabacker J; Wetterauer B; Wink M Z Naturforsch C J Biosci; 2008; 63(11-12):913-8. PubMed ID: 19227845 [TBL] [Abstract][Full Text] [Related]
4. Chicken thigh, chicken liver, and iron-fortified wheat flour increase iron uptake in an in vitro digestion/Caco-2 cell model. Pachón H; Stoltzfus RJ; Glahn RP Nutr Res; 2008 Dec; 28(12):851-8. PubMed ID: 19083498 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. Laparra JM; Vélez D; Barberá R; Farré R; Montoro R J Agric Food Chem; 2005 Nov; 53(22):8829-33. PubMed ID: 16248591 [TBL] [Abstract][Full Text] [Related]
6. Cadmium bioavailability from vegetable and animal-based foods assessed with in vitro digestion/caco-2 cell model. Chunhabundit R; Srianujata S; Bunyaratvej A; Kongkachuichai R; Satayavivad J; Kaojarern S J Med Assoc Thai; 2011 Feb; 94(2):164-71. PubMed ID: 21534362 [TBL] [Abstract][Full Text] [Related]
7. Effect of dietary ligands and food matrices on zinc uptake in Caco-2 cells: implications in assessing zinc bioavailability. Sreenivasulu K; Raghu P; Ravinder P; Nair KM J Agric Food Chem; 2008 Nov; 56(22):10967-72. PubMed ID: 18947232 [TBL] [Abstract][Full Text] [Related]
8. Interactions between 3,4-methylenedioxymethamphetamine, methamphetamine, ketamine, and caffeine in human intestinal Caco-2 cells and in oral administration to rats. Kuwayama K; Inoue H; Kanamori T; Tsujikawa K; Miyaguchi H; Iwata Y; Miyauchi S; Kamo N; Kishi T Forensic Sci Int; 2007 Aug; 170(2-3):183-8. PubMed ID: 17614227 [TBL] [Abstract][Full Text] [Related]
9. Urinary excretion of acrylamide and metabolites in Fischer 344 rats and B6C3F(1) mice administered a single dose of acrylamide. Doerge DR; Twaddle NC; Boettcher MI; McDaniel LP; Angerer J Toxicol Lett; 2007 Feb; 169(1):34-42. PubMed ID: 17224249 [TBL] [Abstract][Full Text] [Related]
10. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers. Boyer J; Brown D; Liu RH J Agric Food Chem; 2004 Nov; 52(23):7172-9. PubMed ID: 15537334 [TBL] [Abstract][Full Text] [Related]
11. Review of methods for the reduction of dietary content and toxicity of acrylamide. Friedman M; Levin CE J Agric Food Chem; 2008 Aug; 56(15):6113-40. PubMed ID: 18624452 [TBL] [Abstract][Full Text] [Related]
12. Comparison of iron uptake from reduced iron powder and FeSO4 using the Caco-2 cell model: effects of ascorbic acid, phytic acid, and pH. He WL; Feng Y; Li XL; Yang XE J Agric Food Chem; 2008 Apr; 56(8):2637-42. PubMed ID: 18376840 [TBL] [Abstract][Full Text] [Related]
13. Calcium, iron and zinc uptakes by Caco-2 cells from white beans and effect of cooking. Viadel B; Barberá R; Farré R Int J Food Sci Nutr; 2006; 57(3-4):190-7. PubMed ID: 17127469 [TBL] [Abstract][Full Text] [Related]
14. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. Bikker P; Dirkzwager A; Fledderus J; Trevisi P; le Huërou-Luron I; Lallès JP; Awati A J Anim Sci; 2006 Dec; 84(12):3337-45. PubMed ID: 17093226 [TBL] [Abstract][Full Text] [Related]
15. Absorption and metabolism of the food contaminant 3-chloro-1,2-propanediol (3-MCPD) and its fatty acid esters by human intestinal Caco-2 cells. Buhrke T; Weisshaar R; Lampen A Arch Toxicol; 2011 Oct; 85(10):1201-8. PubMed ID: 21327620 [TBL] [Abstract][Full Text] [Related]
16. Iron-zinc interaction during uptake in human intestinal Caco-2 cell line: kinetic analyses and possible mechanism. Iyengar V; Pullakhandam R; Nair KM Indian J Biochem Biophys; 2009 Aug; 46(4):299-306. PubMed ID: 19788062 [TBL] [Abstract][Full Text] [Related]
17. Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells. Sato K; Nagai J; Mitsui N; Ryoko Yumoto ; Takano M Life Sci; 2009 Dec; 85(23-26):800-7. PubMed ID: 19879882 [TBL] [Abstract][Full Text] [Related]
18. Esterification of xanthophylls by human intestinal Caco-2 cells. Sugawara T; Yamashita K; Asai A; Nagao A; Shiraishi T; Imai I; Hirata T Arch Biochem Biophys; 2009 Mar; 483(2):205-12. PubMed ID: 18952044 [TBL] [Abstract][Full Text] [Related]
19. [Effects of ascorbic acid and citric acid on iron bioavailability in an in vitro digestion/ Caco-2 cell culture model]. Lei J; Zhang MQ; Huang CY; Bai L; He ZH Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1743-7. PubMed ID: 18971162 [TBL] [Abstract][Full Text] [Related]
20. The uptake and metabolism of benzo[a]pyrene from a sample food substrate in an in vitro model of digestion. Vasiluk L; Pinto LJ; Tsang WS; Gobas FA; Eickhoff C; Moore MM Food Chem Toxicol; 2008 Feb; 46(2):610-8. PubMed ID: 17959292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]