These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 15186132)

  • 21. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.
    Zhu L; Glahn RP; Nelson D; Miller DD
    J Agric Food Chem; 2009 Jun; 57(11):5014-9. PubMed ID: 19449807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations.
    Sergent T; Parys M; Garsou S; Pussemier L; Schneider YJ; Larondelle Y
    Toxicol Lett; 2006 Jul; 164(2):167-76. PubMed ID: 16442754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlorogenic acid is poorly absorbed, independently of the food matrix: A Caco-2 cells and rat chronic absorption study.
    Dupas C; Marsset Baglieri A; Ordonaud C; Tomé D; Maillard MN
    Mol Nutr Food Res; 2006 Nov; 50(11):1053-60. PubMed ID: 17054098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoclave sterilization produces acrylamide in rodent diets: implications for toxicity testing.
    Twaddle NC; Churchwell MI; McDaniel LP; Doerge DR
    J Agric Food Chem; 2004 Jun; 52(13):4344-9. PubMed ID: 15212490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells.
    Johnston K; Sharp P; Clifford M; Morgan L
    FEBS Lett; 2005 Mar; 579(7):1653-7. PubMed ID: 15757656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Recent trends in evaluating risk associated with acrylamide in foods. --Focus on a new approach (MOE) to risk assessment by JECFA--].
    Toda M; Uneyama C; Yamamoto M; Morikawa K
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2005; (123):63-7. PubMed ID: 16541755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamine regulates the expression of proteins with a potential health-promoting effect in human intestinal Caco-2 cells.
    Lenaerts K; Mariman E; Bouwman F; Renes J
    Proteomics; 2006 Apr; 6(8):2454-64. PubMed ID: 16548066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics.
    Int J Toxicol; 2005; 24 Suppl 2():21-50. PubMed ID: 16154914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A catenary model to study transport and conjugation of baicalein, a bioactive flavonoid, in the Caco-2 cell monolayer: demonstration of substrate inhibition.
    Sun H; Zhang L; Chow EC; Lin G; Zuo Z; Pang KS
    J Pharmacol Exp Ther; 2008 Jul; 326(1):117-26. PubMed ID: 18385448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absorption of 3(2H)-furanones by human intestinal epithelial Caco-2 cells.
    Stadler NC; Somoza V; Schwab W
    J Agric Food Chem; 2009 May; 57(9):3949-54. PubMed ID: 19338346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absorption of black currant anthocyanins by monolayers of human intestinal epithelial Caco-2 cells mounted in ussing type chambers.
    Steinert RE; Ditscheid B; Netzel M; Jahreis G
    J Agric Food Chem; 2008 Jul; 56(13):4995-5001. PubMed ID: 18540609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current status of acrylamide research in food: measurement, safety assessment, and formation.
    Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():30-40. PubMed ID: 16037219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut.
    Macfarlane GT; Macfarlane S
    Curr Opin Biotechnol; 2007 Apr; 18(2):156-62. PubMed ID: 17276052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model.
    Tian XJ; Yang XW; Yang X; Wang K
    Int J Pharm; 2009 Feb; 367(1-2):58-64. PubMed ID: 18848870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of free and peptide-bound pyrraline at intestinal and renal epithelial cells.
    Hellwig M; Geissler S; Peto A; Knütter I; Brandsch M; Henle T
    J Agric Food Chem; 2009 Jul; 57(14):6474-80. PubMed ID: 19555106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using dietary exposure and physiologically based pharmacokinetic/pharmacodynamic modeling in human risk extrapolations for acrylamide toxicity.
    Doerge DR; Young JF; Chen JJ; Dinovi MJ; Henry SH
    J Agric Food Chem; 2008 Aug; 56(15):6031-8. PubMed ID: 18624435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced cellular uptake of Ara-C via a peptidomimetic prodrug, L-valyl-ara-C in Caco-2 cells.
    Cheon EP; Hong JH; Han HK
    J Pharm Pharmacol; 2006 Jul; 58(7):927-32. PubMed ID: 16805952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apical uptake and transepithelial transport of sphingosine monomers through intact human intestinal epithelial cells: physicochemical and molecular modeling studies.
    Garmy N; Taïeb N; Yahi N; Fantini J
    Arch Biochem Biophys; 2005 Aug; 440(1):91-100. PubMed ID: 16009329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells.
    Sachs-Barrable K; Thamboo A; Lee SD; Wasan KM
    J Pharm Pharm Sci; 2007; 10(3):319-31. PubMed ID: 17727795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.