BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 15186460)

  • 1. Effect of point-of-use disinfection, flocculation and combined flocculation-disinfection on drinking water quality in western Kenya.
    Crump JA; Okoth GO; Slutsker L; Ogaja DO; Keswick BH; Luby SP
    J Appl Microbiol; 2004; 97(1):225-31. PubMed ID: 15186460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Household based treatment of drinking water with flocculant-disinfectant for preventing diarrhoea in areas with turbid source water in rural western Kenya: cluster randomised controlled trial.
    Crump JA; Otieno PO; Slutsker L; Keswick BH; Rosen DH; Hoekstra RM; Vulule JM; Luby SP
    BMJ; 2005 Sep; 331(7515):478. PubMed ID: 16046440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.
    Preston K; Lantagne D; Kotlarz N; Jellison K
    J Water Health; 2010 Mar; 8(1):60-70. PubMed ID: 20009248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disinfection by-product formation and mitigation strategies in point-of-use chlorination of turbid and non-turbid waters in western Kenya.
    Lantagne DS; Blount BC; Cardinali F; Quick R
    J Water Health; 2008 Mar; 6(1):67-82. PubMed ID: 17998608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Acid-Fast and Non-Acid-Fast Bacteria by Point of Use Coagulation-Flocculation-Disinfection.
    Casanova LM; Sobsey MD
    Int J Environ Res Public Health; 2015 Nov; 12(11):14420-8. PubMed ID: 26580632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel technology to improve drinking water quality: a microbiological evaluation of in-home flocculation and chlorination in rural Guatemala.
    Rangel JM; Lopez B; Mejia MA; Mendoza C; Luby S
    J Water Health; 2003 Mar; 1(1):15-22. PubMed ID: 15384269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbidity and chlorine demand reduction using locally available physical water clarification mechanisms before household chlorination in developing countries.
    Kotlarz N; Lantagne D; Preston K; Jellison K
    J Water Health; 2009 Sep; 7(3):497-506. PubMed ID: 19491500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory evaluation of a new coagulant/disinfectant point-of-use water treatment product for emergencies.
    Marois-Fiset JT; Shaheed A; Brown J; Dorea CC
    J Appl Microbiol; 2016 Sep; 121(3):892-902. PubMed ID: 27306540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-user preferences for and performance of competing POU water treatment technologies among the rural poor of Kenya.
    Albert J; Luoto J; Levine D
    Environ Sci Technol; 2010 Jun; 44(12):4426-32. PubMed ID: 20446726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-of-use chlorination of turbid water: results from a field study in Tanzania.
    Mohamed H; Brown J; Njee RM; Clasen T; Malebo HM; Mbuligwe S
    J Water Health; 2015 Jun; 13(2):544-52. PubMed ID: 26042985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel and simple mixture as point-of-use water treatment agent to produce safe drinking water.
    Islam MS; Ansaruzzaman M; Mahmud ZH; Matin MA; Islam MS; Mallik AK; Neogi SB; Jahid IK; Endtz HP; Cravioto A; Sack DA
    Trans R Soc Trop Med Hyg; 2014 May; 108(5):290-6. PubMed ID: 24619586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point-of-use water treatment and diarrhoea reduction in the emergency context: an effectiveness trial in Liberia.
    Doocy S; Burnham G
    Trop Med Int Health; 2006 Oct; 11(10):1542-52. PubMed ID: 17002728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of the effects of chlorine dioxide, sodium hypochlorite and their combination on simulative water disinfection].
    Wang Y; Li N; Lu Y; Wang Y
    Wei Sheng Yan Jiu; 2008 May; 37(3):285-9. PubMed ID: 18646523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Difficulties in bringing point-of-use water treatment to scale in rural Guatemala.
    Luby SP; Mendoza C; Keswick BH; Chiller TM; Hoekstra RM
    Am J Trop Med Hyg; 2008 Mar; 78(3):382-7. PubMed ID: 18337330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection.
    Templeton MR; Andrews RC; Hofmann R
    Water Res; 2007 Jun; 41(11):2393-406. PubMed ID: 17433406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.
    Kang J; McLaughlin RA
    J Environ Manage; 2016 Nov; 182():208-213. PubMed ID: 27479237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors.
    Kehoe SC; Joyce TM; Ibrahim P; Gillespie JB; Shahar RA; McGuigan KG
    Water Res; 2001 Mar; 35(4):1061-5. PubMed ID: 11235872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.
    LeChevallier MW; Evans TM; Seidler RJ
    Appl Environ Microbiol; 1981 Jul; 42(1):159-67. PubMed ID: 7259162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The combined performance of UV light and chlorine during reclaimed water disinfection.
    Montemayor M; Costan A; Lucena F; Jofre J; Muñoz J; Dalmau E; Mujeriego R; Sala L
    Water Sci Technol; 2008; 57(6):935-40. PubMed ID: 18413956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of turbidity levels and Moringa oleifera concentration on the effectiveness of coagulation in water treatment.
    Nkurunziza T; Nduwayezu JB; Banadda EN; Nhapi I
    Water Sci Technol; 2009; 59(8):1551-8. PubMed ID: 19403968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.