These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 15187077)
1. Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. Mimura H; Nakanishi Y; Hirono M; Maeshima M J Biol Chem; 2004 Aug; 279(33):35106-12. PubMed ID: 15187077 [TBL] [Abstract][Full Text] [Related]
2. Essential amino acid residues in the central transmembrane domains and loops for energy coupling of Streptomyces coelicolor A3(2) H+-pyrophosphatase. Hirono M; Nakanishi Y; Maeshima M Biochim Biophys Acta; 2007 Jul; 1767(7):930-9. PubMed ID: 17498645 [TBL] [Abstract][Full Text] [Related]
3. Oligomerization of H(+)-pyrophosphatase and its structural and functional consequences. Mimura H; Nakanishi Y; Maeshima M Biochim Biophys Acta; 2005 Jul; 1708(3):393-403. PubMed ID: 15953583 [TBL] [Abstract][Full Text] [Related]
4. Identification of amino acid residues participating in the energy coupling and proton transport of Streptomyces coelicolor A3(2) H+-pyrophosphatase. Hirono M; Nakanishi Y; Maeshima M Biochim Biophys Acta; 2007 Dec; 1767(12):1401-11. PubMed ID: 17964530 [TBL] [Abstract][Full Text] [Related]
5. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. Nakanishi Y; Saijo T; Wada Y; Maeshima M J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147 [TBL] [Abstract][Full Text] [Related]
6. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Van RC; Pan YJ; Hsu SH; Huang YT; Hsiao YY; Pan RL Biochim Biophys Acta; 2005 Aug; 1709(1):84-94. PubMed ID: 16018964 [TBL] [Abstract][Full Text] [Related]
7. Functional enhancement by single-residue substitution of Streptomyces coelicolor A3(2) H+-translocating pyrophosphatase. Hirono M; Maeshima M J Biochem; 2009 Nov; 146(5):617-21. PubMed ID: 19628678 [TBL] [Abstract][Full Text] [Related]
8. Disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor and its implications for redox control and enzyme structure. Mimura H; Nakanishi Y; Maeshima M FEBS Lett; 2005 Jul; 579(17):3625-31. PubMed ID: 15963991 [TBL] [Abstract][Full Text] [Related]
9. Expression of functional Streptomyces coelicolor H+-pyrophosphatase and characterization of its molecular properties. Hirono M; Mimura H; Nakanishi Y; Maeshima M J Biochem; 2005 Aug; 138(2):183-91. PubMed ID: 16091593 [TBL] [Abstract][Full Text] [Related]
10. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum. Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429 [TBL] [Abstract][Full Text] [Related]
11. Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase. Lee CH; Chen YW; Huang YT; Pan YJ; Lee CH; Lin SM; Huang LK; Lo YY; Huang YF; Hsu YD; Yen SC; Hwang JK; Pan RL J Membr Biol; 2013 Dec; 246(12):959-66. PubMed ID: 24121627 [TBL] [Abstract][Full Text] [Related]
12. Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure. Asaoka M; Segami S; Maeshima M J Biochem; 2014 Dec; 156(6):333-44. PubMed ID: 25070903 [TBL] [Abstract][Full Text] [Related]
13. The fourth transmembrane domain of the Helicobacter pylori Na+/H+ antiporter NhaA faces a water-filled channel required for ion transport. Kuwabara N; Inoue H; Tsuboi Y; Nakamura N; Kanazawa H J Biol Chem; 2004 Sep; 279(39):40567-75. PubMed ID: 15263004 [TBL] [Abstract][Full Text] [Related]
14. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase. Hsiao YY; Van RC; Hung SH; Lin HH; Pan RL Biochim Biophys Acta; 2004 Feb; 1608(2-3):190-9. PubMed ID: 14871497 [TBL] [Abstract][Full Text] [Related]
15. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding. Huang YT; Liu TH; Lin SM; Chen YW; Pan YJ; Lee CH; Sun YJ; Tseng FG; Pan RL J Biol Chem; 2013 Jul; 288(27):19312-20. PubMed ID: 23720778 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Lin SM; Tsai JY; Hsiao CD; Huang YT; Chiu CL; Liu MH; Tung JY; Liu TH; Pan RL; Sun YJ Nature; 2012 Mar; 484(7394):399-403. PubMed ID: 22456709 [TBL] [Abstract][Full Text] [Related]
17. H+-pyrophosphatase of Rhodospirillum rubrum. High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation my mersalyl. Belogurov GA; Turkina MV; Penttinen A; Huopalahti S; Baykov AA; Lahti R J Biol Chem; 2002 Jun; 277(25):22209-14. PubMed ID: 11956221 [TBL] [Abstract][Full Text] [Related]
18. Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. Hsiao YY; Pan YJ; Hsu SH; Huang YT; Liu TH; Lee CH; Lee CH; Liu PF; Chang WC; Wang YK; Chien LF; Pan RL Biochim Biophys Acta; 2007 Jul; 1767(7):965-73. PubMed ID: 17543272 [TBL] [Abstract][Full Text] [Related]
19. Roles of individual amino acids in helix 14 of the membrane domain of proton-translocating transhydrogenase from Escherichia coli as deduced from cysteine mutagenesis. Karlsson J; Althage M; Rydström J Biochemistry; 2003 Jun; 42(21):6575-81. PubMed ID: 12767241 [TBL] [Abstract][Full Text] [Related]
20. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations. Luoto HH; Nordbo E; Baykov AA; Lahti R; Malinen AM J Biol Chem; 2013 Dec; 288(49):35489-99. PubMed ID: 24158447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]