These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 15187079)
1. Transport of meprin subunits through the secretory pathway: role of the transmembrane and cytoplasmic domains and oligomerization. Hengst JA; Bond JS J Biol Chem; 2004 Aug; 279(33):34856-64. PubMed ID: 15187079 [TBL] [Abstract][Full Text] [Related]
2. COOH-terminal proteolytic processing of secreted and membrane forms of the alpha subunit of the metalloprotease meprin A. Requirement of the I domain for processing in the endoplasmic reticulum. Marchand P; Tang J; Johnson GD; Bond JS J Biol Chem; 1995 Mar; 270(10):5449-56. PubMed ID: 7890660 [TBL] [Abstract][Full Text] [Related]
3. The carboxyl-terminal tail of kinase splitting membranal proteinase/meprin beta is involved in its intracellular trafficking. Litovchick L; Chestukhin A; Shaltiel S J Biol Chem; 1998 Oct; 273(44):29043-51. PubMed ID: 9786910 [TBL] [Abstract][Full Text] [Related]
4. Maturation of secreted meprin alpha during biosynthesis: role of the furin site and identification of the COOH-terminal amino acids of the mouse kidney metalloprotease subunit. Tang J; Bond JS Arch Biochem Biophys; 1998 Jan; 349(1):192-200. PubMed ID: 9439598 [TBL] [Abstract][Full Text] [Related]
5. Polarised expression of human intestinal N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (human meprin) alpha and beta subunits in Madin-Darby canine kidney cells. Eldering JA; Grünberg J; Hahn D; Croes HJ; Fransen JA; Sterchi EE Eur J Biochem; 1997 Aug; 247(3):920-32. PubMed ID: 9288916 [TBL] [Abstract][Full Text] [Related]
6. Cysteine mutations in the MAM domain result in monomeric meprin and alter stability and activity of the proteinase. Marchand P; Volkmann M; Bond JS J Biol Chem; 1996 Sep; 271(39):24236-41. PubMed ID: 8798668 [TBL] [Abstract][Full Text] [Related]
7. Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal. Cauvi DM; Tian X; von Loehneysen K; Robertson MW J Biol Chem; 2006 Apr; 281(15):10448-60. PubMed ID: 16459334 [TBL] [Abstract][Full Text] [Related]
8. C-cytosolic and transmembrane domains of the N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase alpha subunit (human meprin alpha) are essential for its retention in the endoplasmic reticulum and C-terminal processing. Hahn D; Lottaz D; Sterchi EE Eur J Biochem; 1997 Aug; 247(3):933-41. PubMed ID: 9288917 [TBL] [Abstract][Full Text] [Related]
9. Expression of meprin subunit precursors. Membrane anchoring through the beta subunit and mechanism of zymogen activation. Johnson GD; Hersh LB J Biol Chem; 1994 Mar; 269(10):7682-8. PubMed ID: 7510289 [TBL] [Abstract][Full Text] [Related]
10. A specific endoplasmic reticulum export signal drives transport of stem cell factor (Kitl) to the cell surface. Paulhe F; Imhof BA; Wehrle-Haller B J Biol Chem; 2004 Dec; 279(53):55545-55. PubMed ID: 15475566 [TBL] [Abstract][Full Text] [Related]
11. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. Gaynor EC; te Heesen S; Graham TR; Aebi M; Emr SD J Cell Biol; 1994 Nov; 127(3):653-65. PubMed ID: 7962050 [TBL] [Abstract][Full Text] [Related]
12. Structure of homo- and hetero-oligomeric meprin metalloproteases. Dimers, tetramers, and high molecular mass multimers. Bertenshaw GP; Norcum MT; Bond JS J Biol Chem; 2003 Jan; 278(4):2522-32. PubMed ID: 12399461 [TBL] [Abstract][Full Text] [Related]
13. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. Serra-Soriano M; Pallás V; Navarro JA Plant J; 2014 Mar; 77(6):863-79. PubMed ID: 24438546 [TBL] [Abstract][Full Text] [Related]
14. A selective interaction between OS-9 and the carboxyl-terminal tail of meprin beta. Litovchick L; Friedmann E; Shaltiel S J Biol Chem; 2002 Sep; 277(37):34413-23. PubMed ID: 12093806 [TBL] [Abstract][Full Text] [Related]
15. Membrane association and oligomeric organization of the alpha and beta subunits of mouse meprin A. Marchand P; Tang J; Bond JS J Biol Chem; 1994 May; 269(21):15388-93. PubMed ID: 8195177 [TBL] [Abstract][Full Text] [Related]
16. Intersubunit and domain interactions of the meprin B metalloproteinase. Disulfide bonds and protein-protein interactions in the MAM and TRAF domains. Ishmael FT; Shier VK; Ishmael SS; Bond JS J Biol Chem; 2005 Apr; 280(14):13895-901. PubMed ID: 15695509 [TBL] [Abstract][Full Text] [Related]
17. Epithelial sodium channel exit from the endoplasmic reticulum is regulated by a signal within the carboxyl cytoplasmic domain of the alpha subunit. Mueller GM; Kashlan OB; Bruns JB; Maarouf AB; Aridor M; Kleyman TR; Hughey RP J Biol Chem; 2007 Nov; 282(46):33475-33483. PubMed ID: 17855354 [TBL] [Abstract][Full Text] [Related]
18. Sorting competition with membrane-permeable peptides in intact epithelial cells revealed discrimination of transmembrane proteins not only at the trans-Golgi network but also at pre-Golgi stages. Soza A; Norambuena A; Cancino J; de la Fuente E; Henklein P; González A J Biol Chem; 2004 Apr; 279(17):17376-83. PubMed ID: 14764609 [TBL] [Abstract][Full Text] [Related]
19. Role of the COOH-terminal domains of meprin A in folding, secretion, and activity of the metalloendopeptidase. Tsukuba T; Bond JS J Biol Chem; 1998 Dec; 273(52):35260-7. PubMed ID: 9857066 [TBL] [Abstract][Full Text] [Related]
20. Chaperone interactions of the metalloproteinase meprin A in the secretory or proteasomal-degradative pathway. Tsukuba T; Kadowaki T; Hengst JA; Bond JS Arch Biochem Biophys; 2002 Jan; 397(2):191-8. PubMed ID: 11795871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]