These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 15187128)
1. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes. Doytchinova IA; Walshe VA; Jones NA; Gloster SE; Borrow P; Flower DR J Immunol; 2004 Jun; 172(12):7495-502. PubMed ID: 15187128 [TBL] [Abstract][Full Text] [Related]
2. Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation. Doytchinova I; Hemsley S; Flower DR J Immunol; 2004 Dec; 173(11):6813-9. PubMed ID: 15557175 [TBL] [Abstract][Full Text] [Related]
3. Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102: a bioinformatic approach to the prediction of new epitopes. Walshe VA; Hattotuwagama CK; Doytchinova IA; Wong M; Macdonald IK; Mulder A; Claas FH; Pellegrino P; Turner J; Williams I; Turnbull EL; Borrow P; Flower DR PLoS One; 2009 Nov; 4(11):e8095. PubMed ID: 19956609 [TBL] [Abstract][Full Text] [Related]
4. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships. Hattotuwagama CK; Doytchinova IA; Flower DR Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004 [TBL] [Abstract][Full Text] [Related]
5. A combined bioinformatic approach oriented to the analysis and design of peptides with high affinity to MHC class I molecules. Del Carpio CA; Hennig T; Fickel S; Yoshimori A Immunol Cell Biol; 2002 Jun; 80(3):286-99. PubMed ID: 12067416 [TBL] [Abstract][Full Text] [Related]
6. Toward the quantitative prediction of T-cell epitopes: QSAR studies on peptides having affinity with the class I MHC molecular HLA-A*0201. Zhihua L; Yuzhang W; Bo Z; Bing N; Li W J Comput Biol; 2004; 11(4):683-94. PubMed ID: 15579238 [TBL] [Abstract][Full Text] [Related]
7. Additive method for the prediction of protein-peptide binding affinity. Application to the MHC class I molecule HLA-A*0201. Doytchinova IA; Blythe MJ; Flower DR J Proteome Res; 2002; 1(3):263-72. PubMed ID: 12645903 [TBL] [Abstract][Full Text] [Related]
8. Quantitative structure-activity relationships and the prediction of MHC supermotifs. Doytchinova IA; Guan P; Flower DR Methods; 2004 Dec; 34(4):444-53. PubMed ID: 15542370 [TBL] [Abstract][Full Text] [Related]
9. Structural prediction of peptides binding to MHC class I molecules. Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245 [TBL] [Abstract][Full Text] [Related]
10. [Planar molecular arrangements aid the design of MHC class II binding peptides]. Cortés A; Coral J; McLachlan C; Benítez R; Pinilla L Mol Biol (Mosk); 2017; 51(3):524-533. PubMed ID: 28707669 [TBL] [Abstract][Full Text] [Related]
11. Predicting peptide binding to Major Histocompatibility Complex molecules. Liao WW; Arthur JW Autoimmun Rev; 2011 Jun; 10(8):469-73. PubMed ID: 21333759 [TBL] [Abstract][Full Text] [Related]
12. Improved methods for predicting peptide binding affinity to MHC class II molecules. Jensen KK; Andreatta M; Marcatili P; Buus S; Greenbaum JA; Yan Z; Sette A; Peters B; Nielsen M Immunology; 2018 Jul; 154(3):394-406. PubMed ID: 29315598 [TBL] [Abstract][Full Text] [Related]
13. Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. Chen Y; Sidney J; Southwood S; Cox AL; Sakaguchi K; Henderson RA; Appella E; Hunt DF; Sette A; Engelhard VH J Immunol; 1994 Mar; 152(6):2874-81. PubMed ID: 8144888 [TBL] [Abstract][Full Text] [Related]
14. Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules. Zhu S; Udaka K; Sidney J; Sette A; Aoki-Kinoshita KF; Mamitsuka H Bioinformatics; 2006 Jul; 22(13):1648-55. PubMed ID: 16613909 [TBL] [Abstract][Full Text] [Related]
15. A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Altuvia Y; Sette A; Sidney J; Southwood S; Margalit H Hum Immunol; 1997 Nov; 58(1):1-11. PubMed ID: 9438204 [TBL] [Abstract][Full Text] [Related]
16. Computational prediction and identification of HLA-A2.1-specific Ebola virus CTL epitopes. Sundar K; Boesen A; Coico R Virology; 2007 Apr; 360(2):257-63. PubMed ID: 17123567 [TBL] [Abstract][Full Text] [Related]
17. Selection of peptides that bind to the HLA-A2.1 molecule by molecular modelling. Lim JS; Kim S; Lee HG; Lee KY; Kwon TJ; Kim K Mol Immunol; 1996 Feb; 33(2):221-30. PubMed ID: 8649443 [TBL] [Abstract][Full Text] [Related]
18. In silico design of MHC class I high binding affinity peptides through motifs activation map. Xiao Z; Zhang Y; Yu R; Chen Y; Jiang X; Wang Z; Li S BMC Bioinformatics; 2018 Dec; 19(Suppl 19):516. PubMed ID: 30598069 [TBL] [Abstract][Full Text] [Related]
19. Peptide sequences binding to MHC class I proteins. Smith MH; Lam KS; Hersh EM; Lebl M; Grimes WJ Mol Immunol; 1994 Dec; 31(18):1431-7. PubMed ID: 7823969 [TBL] [Abstract][Full Text] [Related]
20. Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. Doytchinova IA; Flower DR J Med Chem; 2001 Oct; 44(22):3572-81. PubMed ID: 11606121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]