These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 15187188)

  • 1. Microbial responses to microgravity and other low-shear environments.
    Nickerson CA; Ott CM; Wilson JW; Ramamurthy R; Pierson DL
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):345-61. PubMed ID: 15187188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis.
    Nickerson CA; Ott CM; Wilson JW; Ramamurthy R; LeBlanc CL; Höner zu Bentrup K; Hammond T; Pierson DL
    J Microbiol Methods; 2003 Jul; 54(1):1-11. PubMed ID: 12732416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spaceflight bioreactor studies of cells and tissues.
    Freed LE; Vunjak-Novakovic G
    Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens.
    Rosenzweig JA; Ahmed S; Eunson J; Chopra AK
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):8797-807. PubMed ID: 25149449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism.
    Huang B; Li DG; Huang Y; Liu CT
    Mil Med Res; 2018 May; 5(1):18. PubMed ID: 29807538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel quantitative biosystem for modeling physiological fluid shear stress on cells.
    Nauman EA; Ott CM; Sander E; Tucker DL; Pierson D; Wilson JW; Nickerson CA
    Appl Environ Microbiol; 2007 Feb; 73(3):699-705. PubMed ID: 17142365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast genomic expression patterns in response to low-shear modeled microgravity.
    Sheehan KB; McInnerney K; Purevdorj-Gage B; Altenburg SD; Hyman LE
    BMC Genomics; 2007 Jan; 8():3. PubMed ID: 17201921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ
    Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role and regulation of sigma S in general resistance conferred by low-shear simulated microgravity in Escherichia coli.
    Lynch SV; Brodie EL; Matin A
    J Bacteriol; 2004 Dec; 186(24):8207-12. PubMed ID: 15576768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model.
    Lewis ML; Moriarity DM; Campbell PS
    J Cell Biochem; 1993 Mar; 51(3):265-73. PubMed ID: 8501128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures.
    Klaus DM; Benoit MR; Nelson ES; Hammond TG
    J Gravit Physiol; 2004 Mar; 11(1):17-27. PubMed ID: 16145796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinostats and bioreactors.
    Klaus DM
    Gravit Space Biol Bull; 2001 Jun; 14(2):55-64. PubMed ID: 11865869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space flight effects on bacterial physiology.
    Leys NM; Hendrickx L; De Boever P; Baatout S; Mergeay M
    J Biol Regul Homeost Agents; 2004; 18(2):193-9. PubMed ID: 15471227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RWPV bioreactor mass transport: earth-based and in microgravity.
    Begley CM; Kleis SJ
    Biotechnol Bioeng; 2002 Nov; 80(4):465-76. PubMed ID: 12325155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-shear modelled microgravity environment maintains morphology and differentiated functionality of primary porcine hepatocyte cultures.
    Nelson LJ; Walker SW; Hayes PC; Plevris JN
    Cells Tissues Organs; 2010; 192(2):125-40. PubMed ID: 20395654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of space flight and mixing on bacterial growth in low volume cultures.
    Kacena MA; Manfredi B; Todd P
    Microgravity Sci Technol; 1999; 12(2):74-7. PubMed ID: 11543425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The progress in research on the mechanisms of the effects of blood volume reduction on orthostatic tolerance after microgravity or simulated microgravity].
    Wang DS; Ren W; Xiang QL; Sun L
    Space Med Med Eng (Beijing); 2000 Apr; 13(2):152-6. PubMed ID: 11543055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria.
    Higginson EE; Galen JE; Levine MM; Tennant SM
    Pathog Dis; 2016 Nov; 74(8):. PubMed ID: 27630185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.
    Nickerson CA; McLean RJC; Barrila J; Yang J; Thornhill SG; Banken LL; Porterfield DM; Poste G; Pellis NR; Ott CM
    Microbiol Mol Biol Rev; 2024 Sep; 88(3):e0014423. PubMed ID: 39158275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial and fungal contamination contributes to physical stress in space flight: studies in the Euromir-95 mission.
    Norbiato G; Vago T; Battocchio L
    J Gravit Physiol; 1998 Jul; 5(1):P145-6. PubMed ID: 11542329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.