These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15187400)

  • 1. Application of a self-organizing map to quantitative structure-activity relationship analysis of carboquinone and benzodiazepine.
    Kawakami J; Hoshi K; Ishiyama A; Miyagishima S; Sato K
    Chem Pharm Bull (Tokyo); 2004 Jun; 52(6):751-5. PubMed ID: 15187400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of quantitative structure-activity relationship model performances on carboquinone derivatives.
    Bolboacă SD; Jäntschi L
    ScientificWorldJournal; 2009 Oct; 9():1148-66. PubMed ID: 19838601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of QSAR sets with a self-organizing map.
    Guha R; Serra JR; Jurs PC
    J Mol Graph Model; 2004 Sep; 23(1):1-14. PubMed ID: 15331049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume learning algorithm artificial neural networks for 3D QSAR studies.
    Tetko IV; Kovalishyn VV; Livingstone DJ
    J Med Chem; 2001 Jul; 44(15):2411-20. PubMed ID: 11448223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ischemia detection with a self-organizing map supplemented by supervised learning.
    Papadimitriou S; Mavroudi S; Vladutu L; Bezerianos A
    IEEE Trans Neural Netw; 2001; 12(3):503-15. PubMed ID: 18249884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised self-organizing maps in drug discovery. 1. Robust behavior with overdetermined data sets.
    Xiao YD; Clauset A; Harris R; Bayram E; Santago P; Schmitt JD
    J Chem Inf Model; 2005; 45(6):1749-58. PubMed ID: 16309281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to see characteristics of structural parameters in QSAR analysis: descriptor mapping using neural networks.
    Ichikawa H; Aoyama T
    SAR QSAR Environ Res; 1993; 1(2-3):115-30. PubMed ID: 8790628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure--activity relationship studies of benzodiazepines.
    Micheli A; Sperduti A; Starita A; Bianucci AM
    J Chem Inf Comput Sci; 2001; 41(1):202-18. PubMed ID: 11206375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of self-organizing maps in compounds pattern recognition and combinatorial library design.
    Yan A
    Comb Chem High Throughput Screen; 2006 Jul; 9(6):473-80. PubMed ID: 16842229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an optimal procedure for variable selection and QSAR model building.
    Yasri A; Hartsough D
    J Chem Inf Comput Sci; 2001; 41(5):1218-27. PubMed ID: 11604021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Database mining applied to central nervous system (CNS) activity.
    Pintore M; Taboureau O; Ros F; Chrétien JR
    Eur J Med Chem; 2001 Apr; 36(4):349-59. PubMed ID: 11461760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-grid technique for modeling 3D QSAR using self-organizing neural network (SOM) and PLS analysis: application to steroids and colchicinoids.
    Polański J
    SAR QSAR Environ Res; 2000; 11(3-4):245-61. PubMed ID: 10969874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic algorithms and self-organizing maps: a powerful combination for modeling complex QSAR and QSPR problems.
    Bayram E; Santago P; Harris R; Xiao YD; Clauset AJ; Schmitt JD
    J Comput Aided Mol Des; 2004; 18(7-9):483-93. PubMed ID: 15729848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating genotoxicity of metal oxide nanoparticles: Application of advanced supervised and unsupervised machine learning techniques.
    Sizochenko N; Syzochenko M; Fjodorova N; Rasulev B; Leszczynski J
    Ecotoxicol Environ Saf; 2019 Dec; 185():109733. PubMed ID: 31580980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach.
    Wang YH; Li Y; Yang SL; Yang L
    J Chem Inf Model; 2005; 45(3):750-7. PubMed ID: 15921464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding and reducing variability of SOM neighbourhood structure.
    Rousset P; Guinot C; Maillet B
    Neural Netw; 2006; 19(6-7):838-46. PubMed ID: 16828258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural networks assessing adolescent idiopathic scoliosis: comparison with Lenke classification.
    Phan P; Mezghani N; Wai EK; de Guise J; Labelle H
    Spine J; 2013 Nov; 13(11):1527-33. PubMed ID: 24095098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural networks applied to quantitative structure-activity relationship analysis.
    Aoyama T; Suzuki Y; Ichikawa H
    J Med Chem; 1990 Sep; 33(9):2583-90. PubMed ID: 2202830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationships in carboquinones and benzodiazepines using counter-propagation neural networks.
    Peterson KL
    J Chem Inf Comput Sci; 1995; 35(5):896-904. PubMed ID: 7593373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines.
    Waters L; Manchester KR; Maskell PD; Haegeman C; Haider S
    Sci Justice; 2018 May; 58(3):219-225. PubMed ID: 29685303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.