These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 15188043)
1. Influence of substitution on kinetics and mechanism of ring transformation of substituted S-[1-phenylpyrrolidin-2-on-3-yl]isothiuronium salts. Hanusek J; Hejtmánková L; Sterba V; Sedlák M Org Biomol Chem; 2004 Jun; 2(12):1756-63. PubMed ID: 15188043 [TBL] [Abstract][Full Text] [Related]
2. Kinetics and mechanism of ring transformation of S-[1-(4-methoxyphenyl)pyrrolidin-2-on-3-yl]isothiuronium bromide to 2-methylimino-5-[2-(4-methoxyphenylamino)ethyl]thiazolidin-4-one. Sedlák M; Hanusek J; Hejtmánková L; Kasparová P Org Biomol Chem; 2003 Apr; 1(7):1204-9. PubMed ID: 12926396 [TBL] [Abstract][Full Text] [Related]
3. Determination of the pKa of cyclobutanone: Brønsted correlation of the general base-catalyzed enolization in aqueous solution and the effect of ring strain. Cope SM; Tailor D; Nagorski RW J Org Chem; 2011 Jan; 76(2):380-90. PubMed ID: 21162595 [TBL] [Abstract][Full Text] [Related]
4. Kinetics and mechanism of base-catalysed degradations of substituted aryl-N-hydroxycarbamates, their N-methyl and N-phenyl analogues. Beier P; Mindl J; Sterba V; Hanusek J Org Biomol Chem; 2004 Feb; 2(4):562-9. PubMed ID: 14770235 [TBL] [Abstract][Full Text] [Related]
5. Kinetic evidence for the coexistence of zwitterionic (T+/-), neutral (T0) and anionic (T-) intermediates during rearrangement of S-(2-oxotetrahydrofuran-3-yl)-N-(4-methoxyphenyl)isothiuronium bromide to 5-(2-hydroxyethyl)-2-(4-methoxyphenylimino)-1,3-thiazolidin-4-one. Vána J; Sedlák M; Hanusek J J Org Chem; 2010 Jun; 75(11):3729-36. PubMed ID: 20429572 [TBL] [Abstract][Full Text] [Related]
6. Kinetic studies on nucleophilic substitution reactions of O-aryl thionobenzoates with azide, cyanide, and hydroxide: contrasting reactivity and mechanism. Um IH; Kim EH; Lee JY J Org Chem; 2009 Feb; 74(3):1212-7. PubMed ID: 19178353 [TBL] [Abstract][Full Text] [Related]
7. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and mechanism of the pyridinolysis of S-2,4-dinitrophenyl 4-substituted thiobenzoates. Castro EA; Aguayo R; Bessolo J; Santos JG J Org Chem; 2005 Apr; 70(9):3530-6. PubMed ID: 15844987 [TBL] [Abstract][Full Text] [Related]
9. Effects of amine nature and nonleaving group substituents on rate and mechanism in aminolyses of 2,4-dinitrophenyl X-substituted benzoates. Um IH; Kim KH; Park HR; Fujio M; Tsuno Y J Org Chem; 2004 May; 69(11):3937-42. PubMed ID: 15153028 [TBL] [Abstract][Full Text] [Related]
10. Amidates as leaving groups: structure/reactivity correlation of the hydroxide-dependent E1cB-like breakdown of carbinolamides in aqueous solution. Tenn WJ; Murphy JL; Bim-Merle JK; Brown JA; Junia AJ; Price MA; Nagorski RW J Org Chem; 2007 Aug; 72(16):6075-83. PubMed ID: 17629336 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of the addition half of the O-acetylserine sulfhydrylase-A reaction. Rabeh WM; Alguindigue SS; Cook PF Biochemistry; 2005 Apr; 44(14):5541-50. PubMed ID: 15807548 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and aqueous chemistry of alpha-acetoxy-N-nitrosomorpholine: reactive intermediates and products. Zink CN; Kim HJ; Fishbein JC J Org Chem; 2006 Jan; 71(1):202-9. PubMed ID: 16388636 [TBL] [Abstract][Full Text] [Related]
13. Catalytic mechanism of hamster arylamine N-acetyltransferase 2. Wang H; Liu L; Hanna PE; Wagner CR Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314 [TBL] [Abstract][Full Text] [Related]
14. The aminolysis of N-aroyl beta-lactams occurs by a concerted mechanism. Tsang WY; Ahmed N; Page MI Org Biomol Chem; 2007 Feb; 5(3):485-93. PubMed ID: 17252131 [TBL] [Abstract][Full Text] [Related]
15. Aminolysis of O-aryl thionobenzoates: amine basicity combines with modulation of the nature of substituents in the leaving group and thionobenzoate moiety to control the reaction mechanism. Um IH; Hwang SJ; Yoon S; Jeon SE; Bae SK J Org Chem; 2008 Oct; 73(19):7671-7. PubMed ID: 18767804 [TBL] [Abstract][Full Text] [Related]
16. Hydrolytic products and kinetics of triazophos in buffered and alkaline solutions with different values of pH. Kunde L; Dongxing Y; Yongzhi D; Meng C J Agric Food Chem; 2004 Aug; 52(17):5404-11. PubMed ID: 15315377 [TBL] [Abstract][Full Text] [Related]
17. Kinetics and mechanisms of the pyridinolysis of phenyl and 4-nitrophenyl chlorothionoformates. Formation and hydrolysis of 1-(aryloxythiocarbonyl)pyridinium cations. Castro EA; Cubillos M; Santos JG J Org Chem; 2004 Jul; 69(14):4802-7. PubMed ID: 15230606 [TBL] [Abstract][Full Text] [Related]
18. Effect of o-methyl group on rate, mechanism, and resonance contribution: aminolysis of Y-substituted phenyl X-substituted 2-methylbenzoates. Um IH; Lee JY; Lee HW; Nagano Y; Fujio M; Tsuno Y J Org Chem; 2005 Jun; 70(13):4980-7. PubMed ID: 15960495 [TBL] [Abstract][Full Text] [Related]
19. Liquid ammonia as a dipolar aprotic solvent for aliphatic nucleophilic substitution reactions. Ji P; Atherton J; Page MI J Org Chem; 2011 Mar; 76(5):1425-35. PubMed ID: 21348532 [TBL] [Abstract][Full Text] [Related]
20. Organic reactivity in liquid ammonia. Ji P; Atherton J; Page MI Org Biomol Chem; 2012 Aug; 10(30):5732-9. PubMed ID: 22538452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]