BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15188431)

  • 1. Independent induction and formation of the dorsal and ventral fins in Xenopus laevis.
    Tucker AS; Slack JM
    Dev Dyn; 2004 Jul; 230(3):461-7. PubMed ID: 15188431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the border of the neural plate may be positioned by the interaction between signals that induce ventral and dorsal mesoderm.
    Zhang J; Jacobson AG
    Dev Dyn; 1993 Feb; 196(2):79-90. PubMed ID: 8364224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventral cell rearrangements contribute to anterior-posterior axis lengthening between neurula and tailbud stages in Xenopus laevis.
    Larkin K; Danilchik MV
    Dev Biol; 1999 Dec; 216(2):550-60. PubMed ID: 10642792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction.
    Mancilla A; Mayor R
    Dev Biol; 1996 Aug; 177(2):580-9. PubMed ID: 8806833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos.
    Bonstein L; Elias S; Frank D
    Dev Biol; 1998 Jan; 193(2):156-68. PubMed ID: 9473321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC; Slack JM
    J Embryol Exp Morphol; 1983 Dec; 78():299-317. PubMed ID: 6663230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm.
    Poznanski A; Minsuk S; Stathopoulos D; Keller R
    Dev Biol; 1997 Sep; 189(2):256-69. PubMed ID: 9299118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration.
    Collazo A; Bronner-Fraser M; Fraser SE
    Development; 1993 Jun; 118(2):363-76. PubMed ID: 7693414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis.
    Shook DR; Majer C; Keller R
    Dev Biol; 2004 Jun; 270(1):163-85. PubMed ID: 15136148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis.
    Kau CL; Turpen JB
    J Immunol; 1983 Nov; 131(5):2262-6. PubMed ID: 6605382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern formation in 8-cell composite embryos of Xenopus laevis.
    Kageura H; Yamana K
    J Embryol Exp Morphol; 1986 Feb; 91():79-100. PubMed ID: 3711793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of epitheliomesenchymal transformation. I. Events in the onset of neural crest cell migration are separable and inducible by protein kinase inhibitors.
    Newgreen DF; Minichiello J
    Dev Biol; 1995 Jul; 170(1):91-101. PubMed ID: 7541378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semaphorin and neuropilin expression during early morphogenesis of Xenopus laevis.
    Koestner U; Shnitsar I; Linnemannstöns K; Hufton AL; Borchers A
    Dev Dyn; 2008 Dec; 237(12):3853-63. PubMed ID: 18985750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frizzled7 mediates canonical Wnt signaling in neural crest induction.
    Abu-Elmagd M; Garcia-Morales C; Wheeler GN
    Dev Biol; 2006 Oct; 298(1):285-98. PubMed ID: 16928367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging.
    Papan C; Boulat B; Velan SS; Fraser SE; Jacobs RE
    Dev Biol; 2007 May; 305(1):161-71. PubMed ID: 17368611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers.
    Krotoski DM; Fraser SE; Bronner-Fraser M
    Dev Biol; 1988 May; 127(1):119-32. PubMed ID: 2452101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell intercalation during notochord development in Xenopus laevis.
    Keller R; Cooper MS; Danilchik M; Tibbetts P; Wilson PA
    J Exp Zool; 1989 Aug; 251(2):134-54. PubMed ID: 2769201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The marginal zone of the 32-cell amphibian embryo contains all the information required for chordamesoderm development.
    Pierce KE; Brothers AJ
    J Exp Zool; 1992 Apr; 262(1):40-50. PubMed ID: 1583451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration.
    Sobkow L; Epperlein HH; Herklotz S; Straube WL; Tanaka EM
    Dev Biol; 2006 Feb; 290(2):386-97. PubMed ID: 16387293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Migratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo.
    Epperlein HH; Selleck MA; Meulemans D; Mchedlishvili L; Cerny R; Sobkow L; Bronner-Fraser M
    Dev Dyn; 2007 Feb; 236(2):389-403. PubMed ID: 17183528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.