BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 15189086)

  • 1. Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies.
    Godavarty A; Thompson AB; Roy R; Gurfinkel M; Eppstein MJ; Zhang C; Sevick-Muraca EM
    J Biomed Opt; 2004; 9(3):488-96. PubMed ID: 15189086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries.
    Roy R; Godavarty A; Sevick-Muraca EM
    J Biomed Opt; 2006; 11(4):044007. PubMed ID: 16965164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection.
    Joshi A; Bangerth W; Hwang K; Rasmussen JC; Sevick-Muraca EM
    Med Phys; 2006 May; 33(5):1299-310. PubMed ID: 16752565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plane-wave fluorescence tomography with adaptive finite elements.
    Joshi A; Bangerth W; Hwang K; Rasmussen J; Sevick-Muraca EM
    Opt Lett; 2006 Jan; 31(2):193-5. PubMed ID: 16441027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-enhanced three-dimensional lifetime imaging: a phantom study.
    Roy R; Godavarty A; Sevick-Muraca EM
    Phys Med Biol; 2007 Jul; 52(14):4155-70. PubMed ID: 17664600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry.
    Roy R; Thompson AB; Godavarty A; Sevick-Muraca EM
    IEEE Trans Med Imaging; 2005 Feb; 24(2):137-54. PubMed ID: 15707240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.
    Ge J; Zhu B; Regalado S; Godavarty A
    Med Phys; 2008 Jul; 35(7):3354-63. PubMed ID: 18697559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional fluorescence lifetime tomography.
    Godavarty A; Sevick-Muraca EM; Eppstein MJ
    Med Phys; 2005 Apr; 32(4):992-1000. PubMed ID: 15895582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study.
    Godavarty A; Eppstein MJ; Zhang C; Sevick-Muraca EM
    Radiology; 2005 Apr; 235(1):148-54. PubMed ID: 15798170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast image reconstruction in fluorescence optical tomography using data compression.
    Rudge TJ; Soloviev VY; Arridge SR
    Opt Lett; 2010 Mar; 35(5):763-5. PubMed ID: 20195345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries.
    Godavarty A; Zhang C; Eppstein MJ; Sevick-Muraca EM
    Med Phys; 2004 Feb; 31(2):183-90. PubMed ID: 15000603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Reconstruction for free-space 360 degrees fluorescence molecular tomography and the effects of animal motion.
    Lasser T; Soubret A; Ripoll J; Ntziachristos V
    IEEE Trans Med Imaging; 2008 Feb; 27(2):188-94. PubMed ID: 18334440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies.
    Ge J; Erickson SJ; Godavarty A
    Appl Opt; 2009 Nov; 48(33):6408-16. PubMed ID: 19935959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between a time-domain and a frequency-domain system for optical tomography.
    Nissilä I; Hebden JC; Jennions D; Heino J; Schweiger M; Kotilahti K; Noponen T; Gibson A; Järvenpää S; Lipiäinen L; Katila T
    J Biomed Opt; 2006; 11(6):064015. PubMed ID: 17212538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements.
    Schmitz CH; Klemer DP; Hardin R; Katz MS; Pei Y; Graber HL; Levin MB; Levina RD; Franco NA; Solomon WB; Barbour RL
    Appl Opt; 2005 Apr; 44(11):2140-53. PubMed ID: 15835360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional imaging of xenograft tumors using optical computed and emission tomography.
    Oldham M; Sakhalkar H; Oliver T; Wang YM; Kirpatrick J; Cao Y; Badea C; Johnson GA; Dewhirst M
    Med Phys; 2006 Sep; 33(9):3193-202. PubMed ID: 17022212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of ultrasound tomography for breast imaging: technical assessment.
    Duric N; Littrup P; Babkin A; Chambers D; Azevedo S; Pevzner R; Tokarev M; Holsapple E; Rama O; Duncan R
    Med Phys; 2005 May; 32(5):1375-86. PubMed ID: 15984689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments.
    Li S; Zhang Q; Jiang H
    Appl Opt; 2006 May; 45(14):3390-4. PubMed ID: 16676048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of fluorescence spots with space-space MUSIC for mammographylike measurement systems.
    Pfister M; Scholz B
    J Biomed Opt; 2004; 9(3):481-7. PubMed ID: 15189085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.