BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15189089)

  • 21. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer.
    Kortun C; Hijazi YR; Arifler D
    J Biomed Opt; 2008; 13(3):034014. PubMed ID: 18601559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer.
    Chang SK; Mirabal YN; Atkinson EN; Cox D; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2005; 10(2):024031. PubMed ID: 15910104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model.
    Seo I; You JS; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of probe pressure on cervical fluorescence spectroscopy measurements.
    Nath A; Rivoire K; Chang S; Cox D; Atkinson EN; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):523-33. PubMed ID: 15189090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties.
    Pavlova I; Weber CR; Schwarz RA; Williams MD; Gillenwater AM; Richards-Kortum R
    J Biomed Opt; 2009; 14(1):014009. PubMed ID: 19256697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.
    Duraipandian S; Zheng W; Ng J; Low JJ; Ilancheran A; Huang Z
    J Biomed Opt; 2013 Jun; 18(6):067007. PubMed ID: 23797897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence spectroscopy of an in vitro model of human cervical precancer identifies neoplastic phenotype.
    Martin SF; Wood AD; McRobbie MM; Mazilu M; McDonald MP; Samuel ID; Herrington CS
    Int J Cancer; 2007 May; 120(9):1964-70. PubMed ID: 17266040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analytical solution for light propagation in a two-layer tissue structure with a tilted interface for breast imaging.
    Das M; Xu C; Zhu Q
    Appl Opt; 2006 Jul; 45(20):5027-36. PubMed ID: 16807614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological model of human colon tissue fluorescence.
    Zonios GI; Cothren RM; Arendt JT; Wu J; Van Dam J; Crawford JM; Manoharan R; Feld MS
    IEEE Trans Biomed Eng; 1996 Feb; 43(2):113-22. PubMed ID: 8682522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autofluorescence patterns in short-term cultures of normal cervical tissue.
    Brookner CK; Follen M; Boiko I; Galvan J; Thomsen S; Malpica A; Suzuki S; Lotan R; Richards-Kortum R
    Photochem Photobiol; 2000 Jun; 71(6):730-6. PubMed ID: 10857369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    J Biomed Opt; 2008; 13(3):034015. PubMed ID: 18601560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation.
    Péry E; Blondel WC; Thomas C; Guillemin F
    J Biomed Opt; 2009; 14(2):024048. PubMed ID: 19405776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer.
    Tumer K; Ramanujam N; Ghosh J; Richards-Kortum R
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):953-61. PubMed ID: 9691570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions.
    Fawzy Y; Zeng H
    J Biomed Opt; 2008; 13(6):064022. PubMed ID: 19123668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.