These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15189102)

  • 1. Optical characterization of bovine retinal tissues.
    Sardar DK; Salinas FS; Perez JJ; Tsin AT
    J Biomed Opt; 2004; 9(3):624-31. PubMed ID: 15189102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical scattering, absorption, and polarization of healthy and neovascularized human retinal tissues.
    Sardar DK; Yow RM; Tsin AT; Sardar R
    J Biomed Opt; 2005; 10(5):051501. PubMed ID: 16292945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical characterization of melanin.
    Sardar DK; Mayo ML; Glickman RD
    J Biomed Opt; 2001 Oct; 6(4):404-11. PubMed ID: 11728198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region.
    Yust BG; Mimun LC; Sardar DK
    Lasers Med Sci; 2012 Mar; 27(2):413-22. PubMed ID: 21556925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of ocular tissues in the near infrared region.
    Sardar DK; Swanland GY; Yow RM; Thomas RJ; Tsin AT
    Lasers Med Sci; 2007 Mar; 22(1):46-52. PubMed ID: 17143656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation.
    Hammer M; Roggan A; Schweitzer D; Müller G
    Phys Med Biol; 1995 Jun; 40(6):963-78. PubMed ID: 7659735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive measurement of the concentration of melanin, xanthophyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry.
    Hammer M; Schweitzer D; Thamm E; Kolb A
    Int Ophthalmol; 2001; 23(4-6):279-89. PubMed ID: 11944852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical absorption and scattering of bovine cornea, lens and retina in the visible region.
    Sardar DK; Yust BG; Barrera FJ; Mimun LC; Tsin AT
    Lasers Med Sci; 2009 Nov; 24(6):839-47. PubMed ID: 19495828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids of human retina, retinal pigment epithelium, and Bruch's membrane/choroid: comparison of macular and peripheral regions.
    Gülcan HG; Alvarez RA; Maude MB; Anderson RE
    Invest Ophthalmol Vis Sci; 1993 Oct; 34(11):3187-93. PubMed ID: 8407228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin E, retinyl palmitate, and protein in rhesus monkey retina and retinal pigment epithelium-choroid.
    Crabtree DV; Adler AJ; Snodderly DM
    Invest Ophthalmol Vis Sci; 1996 Jan; 37(1):47-60. PubMed ID: 8550335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation.
    Kim AD; Hayakawa C; Venugopalan V
    Opt Lett; 2006 Apr; 31(8):1088-90. PubMed ID: 16625912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model.
    Seo I; You JS; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the optical properties of anisotropic biological media using an isotropic diffusion model.
    Kienle A; Wetzel C; Bassi A; Comelli D; Taroni P; Pifferi A
    J Biomed Opt; 2007; 12(1):014026. PubMed ID: 17343501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo modelling of the spectral reflectance of the human eye.
    Preece SJ; Claridge E
    Phys Med Biol; 2002 Aug; 47(16):2863-77. PubMed ID: 12222851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of the structural and chemical properties of melanosomes isolated from retinal pigment epithelium, iris and choroid of newborn and mature bovine eyes.
    Liu Y; Hong L; Wakamatsu K; Ito S; Adhyaru BB; Cheng CY; Bowers CR; Simon JD
    Photochem Photobiol; 2005; 81(3):510-6. PubMed ID: 15701042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor beta 2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye.
    Pfeffer BA; Flanders KC; Guérin CJ; Danielpour D; Anderson DH
    Exp Eye Res; 1994 Sep; 59(3):323-33. PubMed ID: 7821377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and localization of muscarinic acetylcholine receptors in the ocular tissues of the chick.
    Fischer AJ; McKinnon LA; Nathanson NM; Stell WK
    J Comp Neurol; 1998 Mar; 392(3):273-84. PubMed ID: 9511918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium accumulation in the human retina: effects of age, gender, and cellular toxicity.
    Wills NK; Ramanujam VM; Chang J; Kalariya N; Lewis JR; Weng TX; van Kuijk FJ
    Exp Eye Res; 2008 Jan; 86(1):41-51. PubMed ID: 17967453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo model for studying the effects of melanin concentrations on retina light absorption.
    Guo Y; Yao G; Lei B; Tan J
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):304-11. PubMed ID: 18246163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.