These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Conversion of a ribozyme to a deoxyribozyme through in vitro evolution. Paul N; Springsteen G; Joyce GF Chem Biol; 2006 Mar; 13(3):329-38. PubMed ID: 16638538 [TBL] [Abstract][Full Text] [Related]
4. In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'. Flynn-Charlebois A; Prior TK; Hoadley KA; Silverman SK J Am Chem Soc; 2003 May; 125(18):5346-50. PubMed ID: 12720447 [TBL] [Abstract][Full Text] [Related]
5. The promise and peril of continuous in vitro evolution. Johns GC; Joyce GF J Mol Evol; 2005 Aug; 61(2):253-63. PubMed ID: 15999246 [TBL] [Abstract][Full Text] [Related]
6. Evolution in vitro of an RNA enzyme with altered metal dependence. Lehman N; Joyce GF Nature; 1993 Jan; 361(6408):182-5. PubMed ID: 8421526 [TBL] [Abstract][Full Text] [Related]
7. Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction. Chiuman W; Li Y Chem Biol; 2006 Oct; 13(10):1061-9. PubMed ID: 17052610 [TBL] [Abstract][Full Text] [Related]
8. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. Wang DY; Lai BH; Sen D J Mol Biol; 2002 Apr; 318(1):33-43. PubMed ID: 12054766 [TBL] [Abstract][Full Text] [Related]
9. Natural and engineered nucleic acids as tools to explore biology. Breaker RR Nature; 2004 Dec; 432(7019):838-45. PubMed ID: 15602549 [TBL] [Abstract][Full Text] [Related]
10. In vitro evolution suggests multiple origins for the hammerhead ribozyme. Salehi-Ashtiani K; Szostak JW Nature; 2001 Nov; 414(6859):82-4. PubMed ID: 11689947 [TBL] [Abstract][Full Text] [Related]
11. Mechanism and utility of an RNA-cleaving DNA enzyme. Santoro SW; Joyce GF Biochemistry; 1998 Sep; 37(38):13330-42. PubMed ID: 9748341 [TBL] [Abstract][Full Text] [Related]
12. Characterization of deoxyribozymes that synthesize branched RNA. Wang Y; Silverman SK Biochemistry; 2003 Dec; 42(51):15252-63. PubMed ID: 14690435 [TBL] [Abstract][Full Text] [Related]
13. Identification of cleavage sites in the HIV-1 TAR RNA by 10-23 and 8-17 catalytic motif containing DNA enzymes. Chakraborti S; Banerjea AC Biomacromolecules; 2003; 4(3):568-71. PubMed ID: 12741771 [TBL] [Abstract][Full Text] [Related]
14. Generation of a catalytic module on a self-folding RNA. Yoshioka W; Ikawa Y; Jaeger L; Shiraishi H; Inoue T RNA; 2004 Dec; 10(12):1900-6. PubMed ID: 15525711 [TBL] [Abstract][Full Text] [Related]
15. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Johnston WK; Unrau PJ; Lawrence MS; Glasner ME; Bartel DP Science; 2001 May; 292(5520):1319-25. PubMed ID: 11358999 [TBL] [Abstract][Full Text] [Related]
16. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Silverman SK Nucleic Acids Res; 2005; 33(19):6151-63. PubMed ID: 16286368 [TBL] [Abstract][Full Text] [Related]
17. A DNA enzyme that mimics the first step of RNA splicing. Coppins RL; Silverman SK Nat Struct Mol Biol; 2004 Mar; 11(3):270-4. PubMed ID: 14758353 [TBL] [Abstract][Full Text] [Related]
18. A ribozyme composed of only two different nucleotides. Reader JS; Joyce GF Nature; 2002 Dec 19-26; 420(6917):841-4. PubMed ID: 12490955 [TBL] [Abstract][Full Text] [Related]
19. In vitro selected RNA-cleaving DNA enzymes from combinatorial libraries. Chakraborti S; Sriram B; Banerjea AC Methods Mol Biol; 2004; 252():279-90. PubMed ID: 15017057 [TBL] [Abstract][Full Text] [Related]
20. Expanding the catalytic repertoire of ribozymes and deoxyribozymes beyond RNA substrates. Franzen S Curr Opin Mol Ther; 2010 Apr; 12(2):223-32. PubMed ID: 20373266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]