These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 15189570)

  • 1. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases.
    Green ML; Karp PD
    BMC Bioinformatics; 2004 Jun; 5():76. PubMed ID: 15189570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study.
    Sinha S; Lynn AM; Desai DK
    BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking PSI-BLAST in genome annotation.
    Müller A; MacCallum RM; Sternberg MJ
    J Mol Biol; 1999 Nov; 293(5):1257-71. PubMed ID: 10547299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using genome-context data to identify specific types of functional associations in pathway/genome databases.
    Green ML; Karp PD
    Bioinformatics; 2007 Jul; 23(13):i205-11. PubMed ID: 17646298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and computational identification of a conserved bacterial metabolic module.
    Boutte CC; Srinivasan BS; Flannick JA; Novak AF; Martens AT; Batzoglou S; Viollier PH; Crosson S
    PLoS Genet; 2008 Dec; 4(12):e1000310. PubMed ID: 19096521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources of systematic error in functional annotation of genomes: domain rearrangement, non-orthologous gene displacement and operon disruption.
    Galperin MY; Koonin EV
    In Silico Biol; 1998; 1(1):55-67. PubMed ID: 11471243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PathwayBooster: a tool to support the curation of metabolic pathways.
    Liberal R; Lisowska BK; Leak DJ; Pinney JW
    BMC Bioinformatics; 2015 Mar; 16(1):86. PubMed ID: 25887214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Drosophila MicroRNA targets.
    Stark A; Brennecke J; Russell RB; Cohen SM
    PLoS Biol; 2003 Dec; 1(3):E60. PubMed ID: 14691535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ComPath: comparative enzyme analysis and annotation in pathway/subsystem contexts.
    Choi K; Kim S
    BMC Bioinformatics; 2008 Mar; 9():145. PubMed ID: 18325116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis.
    Anbazhagan P; Harijan RK; Kiema TR; Janardan N; Murthy MR; Michels PA; Juffer AH; Wierenga RK
    Tuberculosis (Edinb); 2014 Jul; 94(4):405-12. PubMed ID: 24825023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational prediction of human metabolic pathways from the complete human genome.
    Romero P; Wagg J; Green ML; Kaiser D; Krummenacker M; Karp PD
    Genome Biol; 2005; 6(1):R2. PubMed ID: 15642094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning methods for metabolic pathway prediction.
    Dale JM; Popescu L; Karp PD
    BMC Bioinformatics; 2010 Jan; 11():15. PubMed ID: 20064214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases.
    Romero PR; Karp PD
    Bioinformatics; 2004 Mar; 20(5):709-17. PubMed ID: 14751985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying Support Vector Machines for Gene Ontology based gene function prediction.
    Vinayagam A; König R; Moormann J; Schubert F; Eils R; Glatting KH; Suhai S
    BMC Bioinformatics; 2004 Aug; 5():116. PubMed ID: 15333146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells.
    Pollack JD; Williams MV; McElhaney RN
    Crit Rev Microbiol; 1997; 23(4):269-354. PubMed ID: 9439886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence.
    Sun J; Zeng AP
    BMC Bioinformatics; 2004 Aug; 5():112. PubMed ID: 15312235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-specific profiles for genome annotation: PRIAM.
    Claudel-Renard C; Chevalet C; Faraut T; Kahn D
    Nucleic Acids Res; 2003 Nov; 31(22):6633-9. PubMed ID: 14602924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting metabolic pathways of plant enzymes without using sequence similarity: Models from machine learning.
    de Oliveira Almeida R; Valente GT
    Plant Genome; 2020 Nov; 13(3):e20043. PubMed ID: 33217216
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.