BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 15189890)

  • 1. High field/high frequency saturation transfer electron paramagnetic resonance spectroscopy: increased sensitivity to very slow rotational motions.
    Hustedt EJ; Beth AH
    Biophys J; 2004 Jun; 86(6):3940-50. PubMed ID: 15189890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sensitivity of saturation transfer electron paramagnetic resonance spectra to restricted amplitude uniaxial rotational diffusion.
    Hustedt EJ; Beth AH
    Biophys J; 2001 Dec; 81(6):3156-65. PubMed ID: 11720982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of saturation transfer electron paramagnetic resonance spectra of a spin-labeled integral membrane protein, band 3, in terms of the uniaxial rotational diffusion model.
    Hustedt EJ; Beth AH
    Biophys J; 1995 Oct; 69(4):1409-23. PubMed ID: 8534811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields.
    Song L; Liu Z; Kaur P; Esquiaqui JM; Hunter RI; Hill S; Smith GM; Fanucci GE
    J Magn Reson; 2016 Apr; 265():188-96. PubMed ID: 26923151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2 mm waveband saturation transfer electron paramagnetic resonance of conducting polymers.
    Krinichnyi VI
    J Chem Phys; 2008 Oct; 129(13):134510. PubMed ID: 19045108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 35-GHz (Q-band) saturation transfer electron paramagnetic resonance studies of rotational diffusion.
    Johnson ME; Hyde JS
    Biochemistry; 1981 May; 20(10):2875-80. PubMed ID: 6264947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the orientation of a band 3 affinity spin-label relative to the membrane normal axis of the human erythrocyte.
    Hustedt EJ; Beth AH
    Biochemistry; 1996 May; 35(21):6944-54. PubMed ID: 8639646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale rotational motions of proteins detected by electron paramagnetic resonance and fluorescence.
    Thomas DD
    Biophys J; 1978 Nov; 24(2):439-62. PubMed ID: 215240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculating slow-motional electron paramagnetic resonance spectra from molecular dynamics using a diffusion operator approach.
    Budil DE; Sale KL; Khairy KA; Fajer PG
    J Phys Chem A; 2006 Mar; 110(10):3703-13. PubMed ID: 16526654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 140-GHz (D-band) saturation transfer electron paramagnetic resonance studies of macromolecular dynamics in conducting polymers.
    Krinichnyi VI
    J Phys Chem B; 2008 Aug; 112(32):9746-52. PubMed ID: 18630945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.
    Cobb CE; Hustedt EJ; Beechem JM; Beth AH
    Biophys J; 1993 Mar; 64(3):605-13. PubMed ID: 7682451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsecond rotational motion of spin-labeled myosin heads during isometric muscle contraction. Saturation transfer electron paramagnetic resonance.
    Barnett VA; Thomas DD
    Biophys J; 1989 Sep; 56(3):517-23. PubMed ID: 2551405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saturation transfer electron parametric resonance of an indane-dione spin-label. Calibration with hemoglobin and application to myosin rotational dynamics.
    Roopnarine O; Hideg K; Thomas DD
    Biophys J; 1993 Jun; 64(6):1896-907. PubMed ID: 8396449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and ordering in a spin-labeled oligonucleotide observed by 220 GHz electron paramagnetic resonance.
    Budil DE; Kolaczkowski SV; Perry A; Varaprasad C; Johnson F; Strauss PR
    Biophys J; 2000 Jan; 78(1):430-8. PubMed ID: 10620306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy.
    Kittell AW; Hyde JS
    J Magn Reson; 2015 Jun; 255():68-76. PubMed ID: 25917132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodology for increased precision in saturation transfer electron paramagnetic resonance studies of rotational dynamics.
    Squier TC; Thomas DD
    Biophys J; 1986 Apr; 49(4):921-35. PubMed ID: 3013330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action.
    Möbius K; Savitsky A; Wegener C; Plato M; Fuchs M; Schnegg A; Dubinskii AA; Grishin YA; Grigor'ev IA; Kühn M; Duché D; Zimmermann H; Steinhoff HJ
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S4-S19. PubMed ID: 16235212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR.
    Thompson AR; Binder BP; McCaffrey JE; Svensson B; Thomas DD
    Methods Enzymol; 2015; 564():101-23. PubMed ID: 26477249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of rotational molecular motion by time-resolved saturation transfer electron paramagnetic resonance.
    Fajer P; Thomas DD; Feix JB; Hyde JS
    Biophys J; 1986 Dec; 50(6):1195-202. PubMed ID: 3026503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.
    Nielsen RD; Canaan S; Gladden JA; Gelb MH; Mailer C; Robinson BH
    J Magn Reson; 2004 Jul; 169(1):129-63. PubMed ID: 15183364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.