These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15191190)

  • 1. Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique.
    Hochman A; Leviatan Y
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):1073-81. PubMed ID: 15191190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-core, liquid-cladding photonic crystal fibers.
    De Matos CJ; Cordeiro CM; Dos Santos EM; Ong JS; Bozolan A; Brito Cruz CH
    Opt Express; 2007 Sep; 15(18):11207-12. PubMed ID: 19547475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design.
    Yan M; Shum P
    Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of a dielectric waveguide propagation constant using a multifilament-current model.
    Cory H; Altman Z; Leviatan Y
    Opt Lett; 1989 Sep; 14(18):1026-8. PubMed ID: 19753045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Bloch-modes in hollow-core photonic crystal fiber cladding.
    Couny F; Benabid F; Roberts PJ; Burnett MT; Maier SA
    Opt Express; 2007 Jan; 15(2):325-38. PubMed ID: 19532248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers.
    Digonnet M; Kim H; Shin J; Fan S; Kino G
    Opt Express; 2004 May; 12(9):1864-72. PubMed ID: 19475017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber.
    Zheltikova DA; Scalora M; Zheltikov AM; Bloemer MJ; Shneider MN; D'Aguanno G; Miles RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026609. PubMed ID: 15783443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective mode excitation in hollow-core photonic crystal fiber.
    Galea AD; Couny F; Coupland S; Roberts PJ; Sabert H; Knight JC; Birks TA; Russell PS
    Opt Lett; 2005 Apr; 30(7):717-9. PubMed ID: 15832916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms.
    Saitoh K; Florous NJ; Murao T; Koshiba M
    Opt Express; 2006 Aug; 14(16):7342-52. PubMed ID: 19529103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2006 Apr; 14(7):2979-93. PubMed ID: 19516437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic control of higher-order modes in hollow-core photonic crystal fibers.
    Euser TG; Whyte G; Scharrer M; Chen JS; Abdolvand A; Nold J; Kaminski CF; Russell PS
    Opt Express; 2008 Oct; 16(22):17972-81. PubMed ID: 18958077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss analysis of air-core photonic crystal fibers.
    Xu Y; Yariv A
    Opt Lett; 2003 Oct; 28(20):1885-7. PubMed ID: 14587764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring modal properties of inhibited-coupling guiding fibers by cladding modification.
    Osório JH; Chafer M; Debord B; Giovanardi F; Cordier M; Maurel M; Delahaye F; Amrani F; Vincetti L; Gérôme F; Benabid F
    Sci Rep; 2019 Feb; 9(1):1376. PubMed ID: 30718764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of air-guiding honeycomb photonic bandgap fiber.
    Yan M; Shum P; Hu J
    Opt Lett; 2005 Mar; 30(5):465-7. PubMed ID: 15789704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled core-surface solitons in photonic crystal fibers.
    Skryabin D
    Opt Express; 2004 Oct; 12(20):4841-6. PubMed ID: 19484037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling and decoupling of dual-core photonic bandgap fibers.
    Wang Z; Kai G; Liu Y; Liu J; Zhang C; Sun T; Wang C; Zhang W; Yuan S; Dong X
    Opt Lett; 2005 Oct; 30(19):2542-4. PubMed ID: 16208893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround.
    Roberts P; Williams D; Mangan B; Sabert H; Couny F; Wadsworth W; Birks T; Knight J; Russell P
    Opt Express; 2005 Oct; 13(20):8277-85. PubMed ID: 19498857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves.
    Diez A; Birks TA; Reeves WH; Mangan BJ; Russell PS
    Opt Lett; 2000 Oct; 25(20):1499-501. PubMed ID: 18066258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.