BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15191232)

  • 21. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.
    Burk DH; Ye ZH
    Plant Cell; 2002 Sep; 14(9):2145-60. PubMed ID: 12215512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.
    Li X; Yang X; Wu HX
    BMC Genomics; 2013 Nov; 14(1):768. PubMed ID: 24209714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A survey of the natural variation in biomechanical and cell wall properties in inflorescence stems reveals new insights into the utility of Arabidopsis as a wood model.
    MacMillan CP; O Donnell PJ; Smit AM; Evans R; Stachurski ZH; Torr K; West M; Baltunis J; Strabala TJ
    Funct Plant Biol; 2013 Jul; 40(7):662-676. PubMed ID: 32481139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods.
    Higaki A; Yoshinaga A; Takabe K
    Tree Physiol; 2017 Dec; 37(12):1767-1775. PubMed ID: 29177443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced cellulose orientation analysis in complex model plant tissues.
    Rüggeberg M; Saxe F; Metzger TH; Sundberg B; Fratzl P; Burgert I
    J Struct Biol; 2013 Sep; 183(3):419-428. PubMed ID: 23867392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of putative candidate genes for juvenile wood density in Pinus radiata.
    Li X; Wu HX; Southerton SG
    Tree Physiol; 2012 Aug; 32(8):1046-57. PubMed ID: 22826379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling.
    Funahashi R; Okita Y; Hondo H; Zhao M; Saito T; Isogai A
    Biomacromolecules; 2017 Nov; 18(11):3687-3694. PubMed ID: 28954511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling of the hygroelastic behaviour of normal and compression wood tracheids.
    Joffre T; Neagu RC; Bardage SL; Gamstedt EK
    J Struct Biol; 2014 Jan; 185(1):89-98. PubMed ID: 24184469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructure of cellulose microfibrils in spruce wood.
    Fernandes AN; Thomas LH; Altaner CM; Callow P; Forsyth VT; Apperley DC; Kennedy CJ; Jarvis MC
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):E1195-203. PubMed ID: 22065760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope.
    Cybulska J; Zdunek A; Psonka-Antonczyk KM; Stokke BT
    Carbohydr Polym; 2013 Jan; 92(1):128-37. PubMed ID: 23218275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periodic disorder along ramie cellulose microfibrils.
    Nishiyama Y; Kim UJ; Kim DY; Katsumata KS; May RP; Langan P
    Biomacromolecules; 2003; 4(4):1013-7. PubMed ID: 12857086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation.
    Kölln K; Grotkopp I; Burghammer M; Roth SV; Funari SS; Dommach M; Müller M
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):739-44. PubMed ID: 16239742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfibril angle in wood of Scots pine trees (Pinus sylvestris) after irradiation from the Chernobyl nuclear reactor accident.
    Tulik M; Rusin A
    Environ Pollut; 2005 Mar; 134(2):195-9. PubMed ID: 15589646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The molecular structure within dislocations in Cannabis sativa fibres studied by polarised Raman microspectroscopy.
    Thygesen LG; Gierlinger N
    J Struct Biol; 2013 Jun; 182(3):219-25. PubMed ID: 23542583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy.
    Olsson AM; Bjurhager I; Gerber L; Sundberg B; Salmén L
    Planta; 2011 Jun; 233(6):1277-86. PubMed ID: 21340698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tension wood as a model for functional genomics of wood formation.
    Pilate G; Déjardin A; Laurans F; Leplé JC
    New Phytol; 2004 Oct; 164(1):63-72. PubMed ID: 33873474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy.
    Abraham Y; Elbaum R
    New Phytol; 2013 Feb; 197(3):1012-1019. PubMed ID: 23240639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls.
    Ye D; Kiemle SN; Rongpipi S; Wang X; Wang C; Cosgrove DJ; Gomez EW; Gomez ED
    Sci Rep; 2018 Aug; 8(1):12449. PubMed ID: 30127533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Variation of microfibril angle in Dendrocalamus farinosus analyzed based on X-ray diffraction spectrum and its effect on tensile properties].
    Liu XE; Yang X; Yang SM; Tian GL; Shang LL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1698-701. PubMed ID: 25358191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.