These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15191905)

  • 21. Measuring Liver Mitochondrial Oxygen Consumption and Proton Leak Kinetics to Estimate Mitochondrial Respiration in Holstein Dairy Cattle.
    Rossow HA; Acetoze G; Champagne J; Ramsey JJ
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30582578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E852-61. PubMed ID: 14736705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proton leak and hydrogen peroxide production in liver mitochondria from energy-restricted rats.
    Ramsey JJ; Hagopian K; Kenny TM; Koomson EK; Bevilacqua L; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E31-40. PubMed ID: 14662512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of Proton Leak in Isolated Mitochondria.
    Affourtit C; Wong HS; Brand MD
    Methods Mol Biol; 2018; 1782():157-170. PubMed ID: 29850999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical studies on the control of the oxidative phosphorylation system.
    Korzeniewski B; Froncisz W
    Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial proton leak in brown adipose tissue mitochondria of Ucp1-deficient mice is GDP insensitive.
    Monemdjou S; Kozak LP; Harper ME
    Am J Physiol; 1999 Jun; 276(6):E1073-82. PubMed ID: 10362620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of oxidative phosphorylation in skeletal muscle mitochondria subpopulations in pig: a study using top-down elasticity analysis.
    Lombardi A; Damon M; Vincent A; Goglia F; Herpin P
    FEBS Lett; 2000 Jun; 475(2):84-8. PubMed ID: 10858493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate use and temperature effects in flight muscle mitochondria from an endothermic insect, the hawkmoth Manduca sexta.
    Wilmsen SM; Dzialowski E
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111439. PubMed ID: 37119960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton leak and control of oxidative phosphorylation in perfused, resting rat skeletal muscle.
    Rolfe DF; Brand MD
    Biochim Biophys Acta; 1996 Aug; 1276(1):45-50. PubMed ID: 8764890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria.
    Hagopian K; Harper ME; Ram JJ; Humble SJ; Weindruch R; Ramsey JJ
    Am J Physiol Endocrinol Metab; 2005 Apr; 288(4):E674-84. PubMed ID: 15562252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of state 4 --> state 3 transition in isolated mitochondria.
    Korzeniewski B
    Biophys Chem; 1996 Jan; 57(2-3):143-53. PubMed ID: 17023337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding.
    Marcinkeviciute A; Mildaziene V; Crumm S; Demin O; Hoek JB; Kholodenko B
    Biochem J; 2000 Jul; 349(Pt 2):519-26. PubMed ID: 10880351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling between oxidative metabolism and active transport in the midgut of tobacco hornworm.
    Mandel LJ; Moffett DF; Riddle TG; Grafton MM
    Am J Physiol; 1980 Jan; 238(1):C1-9. PubMed ID: 7356006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat.
    Rolfe DF; Hulbert AJ; Brand MD
    Biochim Biophys Acta; 1994 Dec; 1188(3):405-16. PubMed ID: 7803454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain.
    Brand MD; Hafner RP; Brown GC
    Biochem J; 1988 Oct; 255(2):535-9. PubMed ID: 2849419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of proton leak and electron leak in isolated mitochondria.
    Affourtit C; Quinlan CL; Brand MD
    Methods Mol Biol; 2012; 810():165-82. PubMed ID: 22057567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes.
    Harper ME; Monemdjou S; Ramsey JJ; Weindruch R
    Am J Physiol; 1998 Aug; 275(2):E197-206. PubMed ID: 9688619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.