These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15192222)

  • 1. Femtotesla magnetic field measurement with magnetoresistive sensors.
    Pannetier M; Fermon C; Le Goff G; Simola J; Kerr E
    Science; 2004 Jun; 304(5677):1648-50. PubMed ID: 15192222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal processing in magnetoencephalography.
    Vrba J; Robinson SE
    Methods; 2001 Oct; 25(2):249-71. PubMed ID: 11812209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions.
    Xie Y; Yu H; Zhu Y; Qin X; Rong X; Duan CK; Du J
    Sci Bull (Beijing); 2021 Jan; 66(2):127-132. PubMed ID: 36654219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subfemtotesla multichannel atomic magnetometer.
    Kominis IK; Kornack TW; Allred JC; Romalis MV
    Nature; 2003 Apr; 422(6932):596-9. PubMed ID: 12686995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields.
    Bernarding J; Buntkowsky G; Macholl S; Hartwig S; Burghoff M; Trahms L
    J Am Chem Soc; 2006 Jan; 128(3):714-5. PubMed ID: 16417349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Very low field magnetic resonance imaging with spintronic sensors.
    Herreros Q; Dyvorne H; Campiglio P; Jasmin-Lebras G; Demonti A; Pannetier-Lecoeur M; Fermon C
    Rev Sci Instrum; 2013 Sep; 84(9):095116. PubMed ID: 24089875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement system for temperature dependent noise characterization of magnetoresistive sensors.
    Nording F; Weber S; Ludwig F; Schilling M
    Rev Sci Instrum; 2017 Mar; 88(3):035006. PubMed ID: 28372431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stripe sensor tomography.
    Barbic M; Vltava L; Barrett CP; Emery TH; Scherer A
    Rev Sci Instrum; 2008 Mar; 79(3):033705. PubMed ID: 18377013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux concentration and modulation based magnetoresistive sensor with integrated planar compensation coils.
    Tian W; Hu J; Pan M; Chen D; Zhao J
    Rev Sci Instrum; 2013 Mar; 84(3):035004. PubMed ID: 23556843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.
    Jeppesen S; Linderoth S; Pryds N; Kuhn LT; Jensen JB
    Rev Sci Instrum; 2008 Aug; 79(8):083901. PubMed ID: 19044358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale magnetic field detection using a spin torque oscillator.
    Braganca PM; Gurney BA; Wilson BA; Katine JA; Maat S; Childress JR
    Nanotechnology; 2010 Jun; 21(23):235202. PubMed ID: 20463380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.
    Chiorescu I; Bertet P; Semba K; Nakamura Y; Harmans CJ; Mooij JE
    Nature; 2004 Sep; 431(7005):159-62. PubMed ID: 15356624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.
    Schwarz T; Nagel J; Wölbing R; Kemmler M; Kleiner R; Koelle D
    ACS Nano; 2013 Jan; 7(1):844-50. PubMed ID: 23252846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures.
    Eerenstein W; Wiora M; Prieto JL; Scott JF; Mathur ND
    Nat Mater; 2007 May; 6(5):348-51. PubMed ID: 17417643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury-Based Cuprate High-Transition Temperature Grain-Boundary Junctions and SQUIDs Operating Above 110 Kelvin.
    Gupta A; Sun JZ; Tsuei CC
    Science; 1994 Aug; 265(5175):1075-7. PubMed ID: 17832899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetocardiography Using a Magnetoresistive Sensor Array.
    Shirai Y; Hirao K; Shibuya T; Okawa S; Hasegawa Y; Adachi Y; Sekihara K; Kawabata S
    Int Heart J; 2019 Jan; 60(1):50-54. PubMed ID: 30464123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetostatic detection using magnetoresistive sensors with vertical motion flux modulation.
    Hu J; Pan M; Tian W; Chen D; Zhao J
    Rev Sci Instrum; 2012 May; 83(5):055009. PubMed ID: 22667650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.