BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15192231)

  • 1. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis.
    Lee H; Habas R; Abate-Shen C
    Science; 2004 Jun; 304(5677):1675-8. PubMed ID: 15192231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel function for the chromatin remodeling protein ING2 in muscle differentiation.
    Eapen SA; Netherton SJ; Sarker KP; Deng L; Chan A; Riabowol K; Bonni S
    PLoS One; 2012; 7(7):e40684. PubMed ID: 22808232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output.
    Stijf-Bultsma Y; Sommer L; Tauber M; Baalbaki M; Giardoglou P; Jones DR; Gelato KA; van Pelt J; Shah Z; Rahnamoun H; Toma C; Anderson KE; Hawkins P; Lauberth SM; Haramis AP; Hart D; Fischle W; Divecha N
    Mol Cell; 2015 May; 58(3):453-67. PubMed ID: 25866244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes.
    Chen KW; Chang YJ; Yeh CM; Lian YL; Chan MW; Kao CF; Chen L
    Biochim Biophys Acta Gene Regul Mech; 2017 Feb; 1860(2):270-281. PubMed ID: 28039048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marking histone H3 variants: how, when and why?
    Loyola A; Almouzni G
    Trends Biochem Sci; 2007 Sep; 32(9):425-33. PubMed ID: 17764953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A human embryonic limb cell atlas resolved in space and time.
    Zhang B; He P; Lawrence JEG; Wang S; Tuck E; Williams BA; Roberts K; Kleshchevnikov V; Mamanova L; Bolt L; Polanski K; Li T; Elmentaite R; Fasouli ES; Prete M; He X; Yayon N; Fu Y; Yang H; Liang C; Zhang H; Blain R; Chedotal A; FitzPatrick DR; Firth H; Dean A; Bayraktar OA; Marioni JC; Barker RA; Storer MA; Wold BJ; Zhang H; Teichmann SA
    Nature; 2023 Dec; ():. PubMed ID: 38057666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in tooth agenesis and tooth regeneration.
    Ravi V; Murashima-Suginami A; Kiso H; Tokita Y; Huang CL; Bessho K; Takagi J; Sugai M; Tabata Y; Takahashi K
    Regen Ther; 2023 Mar; 22():160-168. PubMed ID: 36819612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone H1 regulates non-coding RNA turnover on chromatin in a m6A-dependent manner.
    Fernández-Justel JM; Santa-María C; Martín-Vírgala S; Ramesh S; Ferrera-Lagoa A; Salinas-Pena M; Isoler-Alcaraz J; Maslon MM; Jordan A; Cáceres JF; Gómez M
    Cell Rep; 2022 Sep; 40(11):111329. PubMed ID: 36103831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Mechanism of TAF-Iβ Chaperone Function on Linker Histone H1.10.
    Feng H; Zhou BR; Schwieters CD; Bai Y
    J Mol Biol; 2022 Oct; 434(19):167755. PubMed ID: 35870650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration.
    Mbadhi MN; Tang JM; Zhang JX
    Front Cell Dev Biol; 2021; 9():759237. PubMed ID: 34926450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Regulation of Myogenesis: Focus on the Histone Variants.
    Esteves de Lima J; Relaix F
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A narrative review of the roles of muscle segment homeobox transcription factor family in cancer.
    Liu C; Huang M; Han C; Li H; Wang J; Huang Y; Chen Y; Zhu J; Fu G; Yu H; Lei Z; Chu X
    Ann Transl Med; 2021 May; 9(9):810. PubMed ID: 34268423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration.
    Massenet J; Gardner E; Chazaud B; Dilworth FJ
    Skelet Muscle; 2021 Jan; 11(1):4. PubMed ID: 33431060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The missing link
    Prendergast L; Reinberg D
    Genes Dev; 2021 Jan; 35(1-2):40-58. PubMed ID: 33397728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Structures and Dynamics of Chromatosomes with Different Human Linker Histone Isoforms.
    Zhou BR; Feng H; Kale S; Fox T; Khant H; de Val N; Ghirlando R; Panchenko AR; Bai Y
    Mol Cell; 2021 Jan; 81(1):166-182.e6. PubMed ID: 33238161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis.
    Behrends M; Engmann O
    Environ Epigenet; 2020; 6(1):dvaa013. PubMed ID: 33214908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of Msx1 promotes cell proliferation through the Fgf9/18-MAPK signaling pathway during embryonic limb development.
    Yang Y; Zhu X; Jia X; Hou W; Zhou G; Ma Z; Yu B; Pi Y; Zhang X; Wang J; Wang G
    Nucleic Acids Res; 2020 Nov; 48(20):11452-11467. PubMed ID: 33080014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeoprotein Msx1-PIASy Interaction Inhibits Angiogenesis.
    Son MJ; Rho SB; Kim K; Oh M; Son C; Song SY; Park K
    Cells; 2020 Aug; 9(8):. PubMed ID: 32784646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone variants in skeletal myogenesis.
    Karthik N; Taneja R
    Epigenetics; 2021 Mar; 16(3):243-262. PubMed ID: 32686575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.