These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 15193587)
1. Parallel systems of error processing in the brain. Yordanova J; Falkenstein M; Hohnsbein J; Kolev V Neuroimage; 2004 Jun; 22(2):590-602. PubMed ID: 15193587 [TBL] [Abstract][Full Text] [Related]
2. Unavoidable errors: a spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task. Vocat R; Pourtois G; Vuilleumier P Neuropsychologia; 2008 Aug; 46(10):2545-55. PubMed ID: 18533202 [TBL] [Abstract][Full Text] [Related]
3. Isolation of late event-related components to checkerboard stimulation. Giger-Mateeva VI; Riemslag FC; Reits D; Schellart NA; Spekreijse H Electroencephalogr Clin Neurophysiol Suppl; 1999; 50():133-49. PubMed ID: 10689456 [No Abstract] [Full Text] [Related]
4. Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington's disease? Beste C; Saft C; Yordanova J; Andrich J; Gold R; Falkenstein M; Kolev V Neuropsychologia; 2007 Oct; 45(13):2922-30. PubMed ID: 17692347 [TBL] [Abstract][Full Text] [Related]
5. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection? Dimoska A; Johnstone SJ; Barry RJ Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442 [TBL] [Abstract][Full Text] [Related]
6. Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. Endrass T; Klawohn J; Schuster F; Kathmann N Neuropsychologia; 2008; 46(7):1877-87. PubMed ID: 18514679 [TBL] [Abstract][Full Text] [Related]
7. [Event-related potential components related to errors]. Falkenstein M; Hoormann J; Hohnsbein J Z Exp Psychol; 1997; 44(1):117-38. PubMed ID: 9498918 [TBL] [Abstract][Full Text] [Related]
8. Gender-specific development of auditory information processing in children: an ERP study. Nanova P; Lyamova L; Hadjigeorgieva M; Kolev V; Yordanova J Clin Neurophysiol; 2008 Sep; 119(9):1992-2003. PubMed ID: 18579438 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task. Stahl J; Gibbons H Clin Neurophysiol; 2007 Mar; 118(3):581-96. PubMed ID: 17188565 [TBL] [Abstract][Full Text] [Related]
10. Spatio-temporal frequency characteristics of intersensory components in audiovisually evoked potentials. Sakowitz OW; Quian Quiroga R; Schürmann M; Başar E Brain Res Cogn Brain Res; 2005 May; 23(2-3):316-26. PubMed ID: 15820639 [TBL] [Abstract][Full Text] [Related]
12. An integrated auditory-comprehension process augmented through topographical maps and a new eigensystem study. Cabrerizo M; Adjouadi M; Nunez K; Yaylali I; Jayakar P Biomed Sci Instrum; 2004; 40():187-92. PubMed ID: 15133956 [TBL] [Abstract][Full Text] [Related]
13. Multisensory interactions within human primary cortices revealed by BOLD dynamics. Martuzzi R; Murray MM; Michel CM; Thiran JP; Maeder PP; Clarke S; Meuli RA Cereb Cortex; 2007 Jul; 17(7):1672-9. PubMed ID: 16968869 [TBL] [Abstract][Full Text] [Related]
14. Neural time course of conflict adaptation effects on the Stroop task. Larson MJ; Kaufman DA; Perlstein WM Neuropsychologia; 2009 Feb; 47(3):663-70. PubMed ID: 19071142 [TBL] [Abstract][Full Text] [Related]
15. Neural processes associated with antisaccade task performance investigated with event-related FMRI. Ford KA; Goltz HC; Brown MR; Everling S J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770 [TBL] [Abstract][Full Text] [Related]
16. The temporal interaction of modality specific and process specific neural networks supporting simple working memory tasks. Protzner AB; Cortese F; Alain C; McIntosh AR Neuropsychologia; 2009 Jul; 47(8-9):1954-63. PubMed ID: 19428428 [TBL] [Abstract][Full Text] [Related]
17. Auditory-evoked potentials to frequency increase and decrease of high- and low-frequency tones. Pratt H; Starr A; Michalewski HJ; Dimitrijevic A; Bleich N; Mittelman N Clin Neurophysiol; 2009 Feb; 120(2):360-73. PubMed ID: 19070543 [TBL] [Abstract][Full Text] [Related]
18. The interaction between somatosensory and auditory cognitive processing assessed with event-related potentials. Touge T; Gonzalez D; Wu J; Deguchi K; Tsukaguchi M; Shimamura M; Ikeda K; Kuriyama S J Clin Neurophysiol; 2008 Apr; 25(2):90-7. PubMed ID: 18340272 [TBL] [Abstract][Full Text] [Related]
19. A neurophysiological study of the detrimental effects of alprazolam on human action monitoring. Riba J; Rodríguez-Fornells A; Münte TF; Barbanoj MJ Brain Res Cogn Brain Res; 2005 Oct; 25(2):554-65. PubMed ID: 16168630 [TBL] [Abstract][Full Text] [Related]
20. Development of error-monitoring event-related potentials in adolescents. Davies PL; Segalowitz SJ; Gavin WJ Ann N Y Acad Sci; 2004 Jun; 1021():324-8. PubMed ID: 15251904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]