These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 15193588)

  • 21. Oral texture influences the neural processing of ortho- and retronasal odors in humans.
    Iannilli E; Bult JH; Roudnitzky N; Gerber J; de Wijk RA; Hummel T
    Brain Res; 2014 Oct; 1587():77-87. PubMed ID: 25175838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The application of functional magnetic resonance imaging for the assessment of localisation and activation of cortex smell centers depending on stimulus used in normal volunteers].
    Marchwicka-Wasiak M; Stefańczyk L; Góraj B
    Otolaryngol Pol; 2004; 58(5):881-6. PubMed ID: 15732770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. fMRI of human olfaction at the individual level: interindividual variability.
    Morrot G; Bonny JM; Lehallier B; Zanca M
    J Magn Reson Imaging; 2013 Jan; 37(1):92-100. PubMed ID: 22987333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception.
    Bensafi M; Sobel N; Khan RM
    J Neurophysiol; 2007 Dec; 98(6):3254-62. PubMed ID: 17913994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased brain activation in response to odors in patients with hyposmia after theophylline treatment demonstrated by fMRI.
    Levy LM; Henkin RI; Lin CS; Hutter A; Schellinger D
    J Comput Assist Tomogr; 1998; 22(5):760-70. PubMed ID: 9754114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging evolutionarily conserved neural networks: preferential activation of the olfactory system by food-related odor.
    Kulkarni P; Stolberg T; Sullivanjr JM; Ferris CF
    Behav Brain Res; 2012 Apr; 230(1):201-7. PubMed ID: 22343130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones.
    Xu F; Schaefer M; Kida I; Schafer J; Liu N; Rothman DL; Hyder F; Restrepo D; Shepherd GM
    J Comp Neurol; 2005 Sep; 489(4):491-500. PubMed ID: 16025460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sniffing and smelling: separate subsystems in the human olfactory cortex.
    Sobel N; Prabhakaran V; Desmond JE; Glover GH; Goode RL; Sullivan EV; Gabrieli JD
    Nature; 1998 Mar; 392(6673):282-6. PubMed ID: 9521322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation and optimization of statistical approaches for modeling odorant-induced fMRI signal changes in olfactory-related brain areas.
    Tabert MH; Steffener J; Albers MW; Kern DW; Michael M; Tang H; Brown TR; Devanand DP
    Neuroimage; 2007 Feb; 34(4):1375-90. PubMed ID: 17196831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experience-dependent neural integration of taste and smell in the human brain.
    Small DM; Voss J; Mak YE; Simmons KB; Parrish T; Gitelman D
    J Neurophysiol; 2004 Sep; 92(3):1892-903. PubMed ID: 15102894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy.
    Li J; Zhang W; Wang X; Yuan T; Liu P; Wang T; Shen L; Huang Y; Li N; You H; Xiao T; Feng F; Ma C
    PLoS One; 2018; 13(1):e0190699. PubMed ID: 29304099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of olfactory fMRI activation and hemodynamic response function curve with respiration correction.
    Chen H; Wu Y; He C; Long M; Liu G; Ni H; Yin J
    J Neurosci Methods; 2023 Feb; 386():109782. PubMed ID: 36610616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modular structure of functional networks in olfactory memory.
    Meunier D; Fonlupt P; Saive AL; Plailly J; Ravel N; Royet JP
    Neuroimage; 2014 Jul; 95():264-75. PubMed ID: 24662576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.
    Logothetis NK
    Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1003-37. PubMed ID: 12217171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cognitive modulation of olfactory processing.
    de Araujo IE; Rolls ET; Velazco MI; Margot C; Cayeux I
    Neuron; 2005 May; 46(4):671-9. PubMed ID: 15944134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain imaging studies of the functional organization of human olfaction.
    Savic I
    Chem Senses; 2005 Jan; 30 Suppl 1():i222-3. PubMed ID: 15738125
    [No Abstract]   [Full Text] [Related]  

  • 37. Brain mapping with high-resolution FMRI technology.
    Liu N
    Methods Mol Biol; 2007; 401():195-210. PubMed ID: 18368368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course of odorant-induced activation in the human primary olfactory cortex.
    Sobel N; Prabhakaran V; Zhao Z; Desmond JE; Glover GH; Sullivan EV; Gabrieli JD
    J Neurophysiol; 2000 Jan; 83(1):537-51. PubMed ID: 10634894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methodological considerations in conducting an olfactory fMRI study.
    Vedaei F; Fakhri M; Harirchian MH; Firouznia K; Lotfi Y; Ali Oghabian M
    Behav Neurol; 2013 Jan; 27(3):267-76. PubMed ID: 23619085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional imaging of the human olfactory cortex by magnetic resonance imaging.
    Koizuka I; Yano H; Nagahara M; Mochizuki R; Seo R; Shimada K; Kubo T; Nogawa T
    ORL J Otorhinolaryngol Relat Spec; 1994; 56(5):273-5. PubMed ID: 7526311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.