BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1519387)

  • 1. [Heat-induced decomposition of disaccharide Amadori compounds in quasi-water-free reaction conditions].
    Kroh L; Schrödter R; Mügge C; Westphal G; Baltes W
    Z Lebensm Unters Forsch; 1992 Mar; 194(3):216-21. PubMed ID: 1519387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of oligosaccharides in nonenzymatic browning by formation of alpha-dicarbonyl compounds via a "peeling off" mechanism.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2000 Dec; 48(12):6219-26. PubMed ID: 11312795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular shape analysis of a Maillard reaction intermediate.
    Jokic A; Zimpel Z; Huang PM; Mezey PG
    SAR QSAR Environ Res; 2001; 12(3):297-307. PubMed ID: 11696926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-deoxypentosulose: an alpha-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2002 Mar; 50(6):1659-64. PubMed ID: 11879053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of volatiles from the thermal decomposition of Amadori rearrangement products in the cysteine-glucose Maillard reaction and density functional theory study.
    Lei L; Wang S; Zhao Z; Dou S; Zhang S; Wang Y; Gao P; Binchen Wang ; Xu X; Dong L
    Food Res Int; 2024 Jul; 188():114454. PubMed ID: 38823832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment.
    Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT
    J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adducts Derived from (-)-Epigallocatechin Gallate-Amadori Rearrangement Products in Aqueous Reaction Systems: Characterization, Formation, and Thermolysis.
    Yu J; Cui H; Zhang Q; Hayat K; Zhan H; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2020 Sep; 68(39):10902-10911. PubMed ID: 32893622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. News on the Maillard reaction of oligomeric carbohydrates: a survey.
    Kroh LW; Schulz A
    Nahrung; 2001 Jun; 45(3):160-3. PubMed ID: 11455781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a new Maillard type reaction product generated by heating 1-deoxymaltulosyl-glycine in the presence of cysteine.
    Ota M; Kohmura M; Kawaguchi H
    J Agric Food Chem; 2006 Jul; 54(14):5127-31. PubMed ID: 16819926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of reactive intermediates from Amadori compounds under physiological conditions.
    Zyzak DV; Richardson JM; Thorpe SR; Baynes JW
    Arch Biochem Biophys; 1995 Jan; 316(1):547-54. PubMed ID: 7840665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maillard Browning Inhibition by Ellagic Acid via Its Adduct Formation with the Amadori Rearrangement Product.
    Cui H; Wang Z; Ma M; Hayat K; Zhang Q; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Sep; 69(34):9924-9933. PubMed ID: 34427083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glycine on reaction of cysteine-xylose: Insights on initial Maillard stage intermediates to develop meat flavor.
    Cao C; Xie J; Hou L; Zhao J; Chen F; Xiao Q; Zhao M; Fan M
    Food Res Int; 2017 Sep; 99(Pt 1):444-453. PubMed ID: 28784504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of Complex Maillard Chemical Reactions, Resolved in Time.
    Hemmler D; Roullier-Gall C; Marshall JW; Rychlik M; Taylor AJ; Schmitt-Kopplin P
    Sci Rep; 2017 Jun; 7(1):3227. PubMed ID: 28607428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of glucose in the maillard browning of maltose and glycine: a radiochemical approach.
    Mundt S; Wedzicha BL
    J Agric Food Chem; 2005 Aug; 53(17):6798-803. PubMed ID: 16104802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Amadori compounds by high-performance cation exchange chromatography coupled to tandem mass spectrometry.
    Davidek T; Kraehenbuehl K; Devaud S; Robert F; Blank I
    Anal Chem; 2005 Jan; 77(1):140-7. PubMed ID: 15623289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.
    Hou L; Xie J; Zhao J; Zhao M; Fan M; Xiao Q; Liang J; Chen F
    Food Chem; 2017 Oct; 232():135-144. PubMed ID: 28490056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.
    Kanzler C; Schestkowa H; Haase PT; Kroh LW
    J Agric Food Chem; 2017 Oct; 65(40):8957-8965. PubMed ID: 28880081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine-Xylose Amadori Compound Formation Tracing through Maillard Browning Inhibition by 2-Threityl-thiazolidine-4-carboxylic Acid Formation from Deoxyosone and Exogenous Cysteine.
    Wei S; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Sep; 70(38):12164-12171. PubMed ID: 36124743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I--reaction mechanism.
    Martins SI; Marcelis AT; van Boekel MA
    Carbohydr Res; 2003 Jul; 338(16):1651-63. PubMed ID: 12873421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.