These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1159 related articles for article (PubMed ID: 15194438)

  • 1. Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells.
    Halevy O; Cantley LC
    Exp Cell Res; 2004 Jul; 297(1):224-34. PubMed ID: 15194438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Akt phosphorylation is not sufficient for insulin-like growth factor-stimulated myogenin expression but must be accompanied by down-regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase phosphorylation.
    Tiffin N; Adi S; Stokoe D; Wu NY; Rosenthal SM
    Endocrinology; 2004 Nov; 145(11):4991-6. PubMed ID: 15489316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential binding of Grb2 or phosphatidylinositol 3-kinase to the met receptor has opposite effects on HGF-induced myoblast proliferation.
    Leshem Y; Gitelman I; Ponzetto C; Halevy O
    Exp Cell Res; 2002 Apr; 274(2):288-98. PubMed ID: 11900489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of insulin-like growth factor (IGF) binding protein-3 synthesis by IGF-I and transforming growth factor-alpha is mediated by both phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways in mammary epithelial cells.
    Sivaprasad U; Fleming J; Verma PS; Hogan KA; Desury G; Cohick WS
    Endocrinology; 2004 Sep; 145(9):4213-21. PubMed ID: 15192040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways.
    Elia D; Madhala D; Ardon E; Reshef R; Halevy O
    Biochim Biophys Acta; 2007 Sep; 1773(9):1438-46. PubMed ID: 17688959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatocyte growth factor enhances protein phosphatase Cdc25A inhibitor compound 5-induced hepatoma cell growth inhibition via Akt-mediated MAPK pathway.
    Wang Z; Wang M; Carr BI
    J Cell Physiol; 2005 Jun; 203(3):510-9. PubMed ID: 15534860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survival.
    Coutant A; Rescan C; Gilot D; Loyer P; Guguen-Guillouzo C; Baffet G
    Hepatology; 2002 Nov; 36(5):1079-88. PubMed ID: 12395317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HGF promotes survival and growth of maturing sympathetic neurons by PI-3 kinase- and MAP kinase-dependent mechanisms.
    Thompson J; Dolcet X; Hilton M; Tolcos M; Davies AM
    Mol Cell Neurosci; 2004 Dec; 27(4):441-52. PubMed ID: 15555922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells.
    Mut M; Lule S; Demir O; Kurnaz IA; Vural I
    Int J Biochem Cell Biol; 2012 Feb; 44(2):302-10. PubMed ID: 22085529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway.
    Shefer G; Oron U; Irintchev A; Wernig A; Halevy O
    J Cell Physiol; 2001 Apr; 187(1):73-80. PubMed ID: 11241351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha.
    Foulstone EJ; Huser C; Crown AL; Holly JM; Stewart CE
    Exp Cell Res; 2004 Mar; 294(1):223-35. PubMed ID: 14980516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of hepatocyte growth factor-mediated signaling in differentiation of pancreatic ductal epithelial cells into insulin-producing cells.
    Li XY; Zhan XR; Lu C; Liu XM; Wang XC
    Biochem Biophys Res Commun; 2010 Jul; 398(3):389-94. PubMed ID: 20599723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin, insulin-like growth factor-I, and platelet-derived growth factor activate extracellular signal-regulated kinase by distinct pathways in muscle cells.
    Tsakiridis T; Tsiani E; Lekas P; Bergman A; Cherepanov V; Whiteside C; Downey GP
    Biochem Biophys Res Commun; 2001 Oct; 288(1):205-11. PubMed ID: 11594774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma.
    Dong G; Chen Z; Li ZY; Yeh NT; Bancroft CC; Van Waes C
    Cancer Res; 2001 Aug; 61(15):5911-8. PubMed ID: 11479233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged activation of the mitogen-activated protein kinase pathway is required for macrophage-like differentiation of a human myeloid leukemic cell line.
    Hu X; Moscinski LC; Valkov NI; Fisher AB; Hill BJ; Zuckerman KS
    Cell Growth Differ; 2000 Apr; 11(4):191-200. PubMed ID: 10775036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein.
    Mehrhof FB; Müller FU; Bergmann MW; Li P; Wang Y; Schmitz W; Dietz R; von Harsdorf R
    Circulation; 2001 Oct; 104(17):2088-94. PubMed ID: 11673351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteocalcin Induces Proliferation via Positive Activation of the PI3K/Akt, P38 MAPK Pathways and Promotes Differentiation Through Activation of the GPRC6A-ERK1/2 Pathway in C2C12 Myoblast Cells.
    Liu S; Gao F; Wen L; Ouyang M; Wang Y; Wang Q; Luo L; Jian Z
    Cell Physiol Biochem; 2017; 43(3):1100-1112. PubMed ID: 28977794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin-like growth factor I is a comitogen for hepatocyte growth factor in a rat model of hepatocellular carcinoma.
    Price JA; Kovach SJ; Johnson T; Koniaris LG; Cahill PA; Sitzmann JV; McKillop IH
    Hepatology; 2002 Nov; 36(5):1089-97. PubMed ID: 12395318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase-Akt signaling pathways.
    Thimmaiah KN; Easton J; Huang S; Veverka KA; Germain GS; Harwood FC; Houghton PJ
    Cancer Res; 2003 Jan; 63(2):364-74. PubMed ID: 12543789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatocyte growth factor stimulates nitric oxide production through endothelial nitric oxide synthase activation by the phosphoinositide 3-kinase/Akt pathway and possibly by mitogen-activated protein kinase kinase in vascular endothelial cells.
    Uruno A; Sugawara A; Kanatsuka H; Arima S; Taniyama Y; Kudo M; Takeuchi K; Ito S
    Hypertens Res; 2004 Nov; 27(11):887-95. PubMed ID: 15824471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.