BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 15195803)

  • 1. Comparative toxicity of glyphosate-based herbicides: aqueous and sediment porewater exposures.
    Tsui MT; Chu LM
    Arch Environ Contam Toxicol; 2004 Apr; 46(3):316-23. PubMed ID: 15195803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of glyphosate and its formulation (Roundup) on the toxicity and bioavailability of metals to Ceriodaphnia dubia.
    Tsui MT; Wang WX; Chu LM
    Environ Pollut; 2005 Nov; 138(1):59-68. PubMed ID: 15878796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors.
    Tsui MT; Chu LM
    Chemosphere; 2003 Aug; 52(7):1189-97. PubMed ID: 12821000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of sediments in modifying the toxicity of two Roundup formulations to six species of larval anurans.
    Fuentes L; Moore LJ; Rodgers JH; Bowerman WW; Yarrow GK; Chao WY
    Environ Toxicol Chem; 2014 Nov; 33(11):2616-20. PubMed ID: 25132544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms.
    Currie Z; Prosser RS; Rodriguez-Gil JL; Mahon K; Poirier D; Solomon KR
    Environ Toxicol Chem; 2015 May; 34(5):1178-84. PubMed ID: 25655706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of glyphosate-based pesticides to four North American frog species.
    Howe CM; Berrill M; Pauli BD; Helbing CC; Werry K; Veldhoen N
    Environ Toxicol Chem; 2004 Aug; 23(8):1928-38. PubMed ID: 15352482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-walled Carbon Nanotubes Reduce Toxicity of Diphenhydramine to Ceriodaphnia dubia in Water and Sediment Exposures.
    Myer MH; Black MC
    Bull Environ Contam Toxicol; 2017 Sep; 99(3):321-327. PubMed ID: 28795203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological evaluation of vital organs of the livebearer Jenynsia multidentata (Jenyns, 1842) exposed to glyphosate: A comparative analysis of Roundup
    Albañil Sánchez JA; da Costa Klosterhoff M; Romano LA; De Martinez Gaspar Martins C
    Chemosphere; 2019 Feb; 217():914-924. PubMed ID: 30471482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing agricultural practices: potential consequences to aquatic organisms.
    Lasier PJ; Urich ML; Hassan SM; Jacobs WN; Bringolf RB; Owens KM
    Environ Monit Assess; 2016 Dec; 188(12):672. PubMed ID: 27848110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of glyphosate formulations on the population dynamics of two freshwater cladoceran species.
    Reno U; Doyle SR; Momo FR; Regaldo L; Gagneten AM
    Ecotoxicology; 2018 Sep; 27(7):784-793. PubMed ID: 29404864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of glyphosate and the glyphosate based herbicides Roundup Original(®) and Roundup Transorb(®) on respiratory morphophysiology of bullfrog tadpoles.
    Rissoli RZ; Abdalla FC; Costa MJ; Rantin FT; McKenzie DJ; Kalinin AL
    Chemosphere; 2016 Aug; 156():37-44. PubMed ID: 27160633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute toxicity and sublethal effects of the mixture glyphosate (Roundup Active) and Cosmo-Flux 411F to anuran embryos and tadpoles of four Colombian species.
    Henao Muñoz LM; Montes Rojas CM; Bernal Bautista MH
    Rev Biol Trop; 2015 Mar; 63(1):223-33. PubMed ID: 26299127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative toxicity of two glyphosate formulations (original formulation of Roundup® and Roundup WeatherMAX®) to six North American larval anurans.
    Fuentes L; Moore LJ; Rodgers JH; Bowerman WW; Yarrow GK; Chao WY
    Environ Toxicol Chem; 2011 Dec; 30(12):2756-61. PubMed ID: 21898567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate.
    Solomon KR; Thompson DG
    J Toxicol Environ Health B Crit Rev; 2003; 6(3):289-324. PubMed ID: 12746143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of whole sediment and porewater toxicity identification evaluation techniques for ammonia and non-polar organic contaminants.
    Mehler WT; You J; Maul JD; Lydy MJ
    Chemosphere; 2010 Feb; 78(7):814-21. PubMed ID: 20042221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna.
    Cuhra M; Traavik T; Bøhn T
    Ecotoxicology; 2013 Mar; 22(2):251-62. PubMed ID: 23224423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the herbicide Roundup® on the metabolic activity of Gammarus fossarum Koch, 1836 (Crustacea; Amphipoda).
    von Fumetti S; Blaurock K
    Ecotoxicology; 2018 Nov; 27(9):1249-1260. PubMed ID: 30191520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae.
    Janssens L; Stoks R
    Aquat Toxicol; 2017 Dec; 193():210-216. PubMed ID: 29100103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal Distribution of Hydrophobic Organic Contaminants in Spiked-Sediment Toxicity Tests: Measuring Total and Freely Dissolved Concentrations in Porewater and Overlying Water.
    Hiki K; Fischer FC; Nishimori T; Watanabe H; Yamamoto H; Endo S
    Environ Toxicol Chem; 2021 Nov; 40(11):3148-3158. PubMed ID: 34432908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of uranium, molybdenum, nickel, and arsenic to Hyalella azteca and Chironomus dilutus in water-only and spiked-sediment toxicity tests.
    Liber K; Doig LE; White-Sobey SL
    Ecotoxicol Environ Saf; 2011 Jul; 74(5):1171-9. PubMed ID: 21529943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.