These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 15196761)
1. Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery. Kakizawa Y; Furukawa S; Kataoka K J Control Release; 2004 Jun; 97(2):345-56. PubMed ID: 15196761 [TBL] [Abstract][Full Text] [Related]
2. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. Kakizawa Y; Furukawa S; Ishii A; Kataoka K J Control Release; 2006 Apr; 111(3):368-70. PubMed ID: 16504335 [TBL] [Abstract][Full Text] [Related]
3. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Pittella F; Zhang M; Lee Y; Kim HJ; Tockary T; Osada K; Ishii T; Miyata K; Nishiyama N; Kataoka K Biomaterials; 2011 Apr; 32(11):3106-14. PubMed ID: 21272932 [TBL] [Abstract][Full Text] [Related]
4. siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Kim HJ; Miyata K; Nomoto T; Zheng M; Kim A; Liu X; Cabral H; Christie RJ; Nishiyama N; Kataoka K Biomaterials; 2014 May; 35(15):4548-56. PubMed ID: 24613051 [TBL] [Abstract][Full Text] [Related]
5. Pancreatic cancer therapy by systemic administration of VEGF siRNA contained in calcium phosphate/charge-conversional polymer hybrid nanoparticles. Pittella F; Miyata K; Maeda Y; Suma T; Watanabe S; Chen Q; Christie RJ; Osada K; Nishiyama N; Kataoka K J Control Release; 2012 Aug; 161(3):868-74. PubMed ID: 22580114 [TBL] [Abstract][Full Text] [Related]
6. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. Pittella F; Cabral H; Maeda Y; Mi P; Watanabe S; Takemoto H; Kim HJ; Nishiyama N; Miyata K; Kataoka K J Control Release; 2014 Mar; 178():18-24. PubMed ID: 24440662 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable polymersomes with an ionizable membrane: facile preparation, superior protein loading, and endosomal pH-responsive protein release. Li S; Meng F; Wang Z; Zhong Y; Zheng M; Liu H; Zhong Z Eur J Pharm Biopharm; 2012 Sep; 82(1):103-11. PubMed ID: 22691417 [TBL] [Abstract][Full Text] [Related]
8. Smart polymeric micelles as nanocarriers for oligonucleotides and siRNA delivery. Kataoka K; Itaka K; Nishiyama N; Yamasaki Y; Oishi M; Nagasaki Y Nucleic Acids Symp Ser (Oxf); 2005; (49):17-8. PubMed ID: 17150611 [TBL] [Abstract][Full Text] [Related]
9. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077 [TBL] [Abstract][Full Text] [Related]
10. Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. Kim SH; Mok H; Jeong JH; Kim SW; Park TG Bioconjug Chem; 2006; 17(1):241-4. PubMed ID: 16417275 [TBL] [Abstract][Full Text] [Related]
11. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Liu P; Yu H; Sun Y; Zhu M; Duan Y Biomaterials; 2012 Jun; 33(17):4403-12. PubMed ID: 22436800 [TBL] [Abstract][Full Text] [Related]
12. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Cao N; Cheng D; Zou S; Ai H; Gao J; Shuai X Biomaterials; 2011 Mar; 32(8):2222-32. PubMed ID: 21186059 [TBL] [Abstract][Full Text] [Related]
13. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles. Kim HJ; Takemoto H; Yi Y; Zheng M; Maeda Y; Chaya H; Hayashi K; Mi P; Pittella F; Christie RJ; Toh K; Matsumoto Y; Nishiyama N; Miyata K; Kataoka K ACS Nano; 2014 Sep; 8(9):8979-91. PubMed ID: 25133608 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. Mi P; Kokuryo D; Cabral H; Kumagai M; Nomoto T; Aoki I; Terada Y; Kishimura A; Nishiyama N; Kataoka K J Control Release; 2014 Jan; 174():63-71. PubMed ID: 24211705 [TBL] [Abstract][Full Text] [Related]
15. pH-responsive oligodeoxynucleotide (ODN)-poly(ethylene glycol) conjugate through acid-labile beta-thiopropionate linkage: preparation and polyion complex micelle formation. Oishi M; Sasaki S; Nagasaki Y; Kataoka K Biomacromolecules; 2003; 4(5):1426-32. PubMed ID: 12959615 [TBL] [Abstract][Full Text] [Related]
17. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. Vandenbroucke RE; Lentacker I; Demeester J; De Smedt SC; Sanders NN J Control Release; 2008 Mar; 126(3):265-73. PubMed ID: 18237813 [TBL] [Abstract][Full Text] [Related]
18. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Sun TM; Du JZ; Yan LF; Mao HQ; Wang J Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636 [TBL] [Abstract][Full Text] [Related]
19. Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Yin Y; Lee MS; Lee JE; Lim SY; Kim ES; Jeong J; Kim D; Kim J; Lee DS; Jeong JH Biomater Sci; 2019 Aug; 7(8):3297-3306. PubMed ID: 31187795 [TBL] [Abstract][Full Text] [Related]
20. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Gao LY; Liu XY; Chen CJ; Wang JC; Feng Q; Yu MZ; Ma XF; Pei XW; Niu YJ; Qiu C; Pang WH; Zhang Q Biomaterials; 2014 Feb; 35(6):2066-78. PubMed ID: 24315577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]