These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15196823)

  • 1. Ultrastructure at carbon fiber microelectrode implantation sites after acute voltammetric measurements in the striatum of anesthetized rats.
    Peters JL; Miner LH; Michael AC; Sesack SR
    J Neurosci Methods; 2004 Aug; 137(1):9-23. PubMed ID: 15196823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat.
    Borland LM; Shi G; Yang H; Michael AC
    J Neurosci Methods; 2005 Aug; 146(2):149-58. PubMed ID: 15975664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon fiber microelectrodes with multiple sensing elements for in vivo voltammetry.
    Dressman SF; Peters JL; Michael AC
    J Neurosci Methods; 2002 Sep; 119(1):75-81. PubMed ID: 12234638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording.
    Lee Y; Kong C; Chang JW; Jun SB
    J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.
    Smith AR; Garris PA; Casto JM
    J Chem Neuroanat; 2015; 66-67():28-39. PubMed ID: 25900708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for direct thalamic stimulation in fMRI studies using a glass-coated carbon fiber electrode.
    Shyu BC; Lin CY; Sun JJ; Sylantyev S; Chang C
    J Neurosci Methods; 2004 Aug; 137(1):123-31. PubMed ID: 15196834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the brain penetration injury associated with microdialysis and voltammetry.
    Jaquins-Gerstl A; Michael AC
    J Neurosci Methods; 2009 Oct; 183(2):127-35. PubMed ID: 19559724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses.
    Potter KA; Buck AC; Self WK; Capadona JR
    J Neural Eng; 2012 Aug; 9(4):046020. PubMed ID: 22832283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of microdialysis probes on vasculature and dopamine in the rat striatum: a combined fluorescence and voltammetric study.
    Mitala CM; Wang Y; Borland LM; Jung M; Shand S; Watkins S; Weber SG; Michael AC
    J Neurosci Methods; 2008 Sep; 174(2):177-85. PubMed ID: 18674561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for the intracranial delivery of reagents to voltammetric recording sites.
    Moquin KF; Jaquins-Gerstl A; Michael AC
    J Neurosci Methods; 2012 Jul; 208(2):101-7. PubMed ID: 22580054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation of in vivo measurements with carbon fiber microelectrodes.
    Logman MJ; Budygin EA; Gainetdinov RR; Wightman RM
    J Neurosci Methods; 2000 Feb; 95(2):95-102. PubMed ID: 10752479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal pH dynamics following insertion of neural microelectrode arrays.
    Johnson MD; Kao OE; Kipke DR
    J Neurosci Methods; 2007 Mar; 160(2):276-87. PubMed ID: 17084461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon fibre micro-electrodes for concomitant in vivo electrophysiological and voltammetric measurements: no reciprocal influences.
    Crespi F; England T; Ratti E; Trist DG
    Neurosci Lett; 1995 Mar; 188(1):33-6. PubMed ID: 7540274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle.
    Garris PA; Ensman R; Poehlman J; Alexander A; Langley PE; Sandberg SG; Greco PG; Wightman RM; Rebec GV
    J Neurosci Methods; 2004 Dec; 140(1-2):103-15. PubMed ID: 15589340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain.
    Zhang M; Liu K; Xiang L; Lin Y; Su L; Mao L
    Anal Chem; 2007 Sep; 79(17):6559-65. PubMed ID: 17676820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology.
    Budai D; Vizvári AD; Bali ZK; Márki B; Nagy LV; Kónya Z; Madarász D; Henn-Mike N; Varga C; Hernádi I
    PLoS One; 2018; 13(3):e0193836. PubMed ID: 29513711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration microelectrode array for peripheral nerve recording and stimulation.
    Kovacs GT; Storment CW; Rosen JM
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):893-902. PubMed ID: 1473818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.