BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15196843)

  • 1. Plants against the global epidemic of arsenic poisoning.
    Alkorta I; Hernández-Allica J; Garbisu C
    Environ Int; 2004 Sep; 30(7):949-51. PubMed ID: 15196843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L.
    Tu S; Ma LQ; Fayiga AO; Zillioux EJ
    Int J Phytoremediation; 2004; 6(1):35-47. PubMed ID: 15224774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water.
    Natarajan S; Stamps RH; Ma LQ; Saha UK; Hernandez D; Cai Y; Zillioux EJ
    J Hazard Mater; 2011 Jan; 185(2-3):983-9. PubMed ID: 21051137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The arsenic hyperaccumulator fern Pteris vittata L.
    Xie QE; Yan XL; Liao XY; Li X
    Environ Sci Technol; 2009 Nov; 43(22):8488-95. PubMed ID: 20028042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.
    Trotta A; Falaschi P; Cornara L; Minganti V; Fusconi A; Drava G; Berta G
    Chemosphere; 2006 Sep; 65(1):74-81. PubMed ID: 16603227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea).
    Salido AL; Hasty KL; Lim JM; Butcher DJ
    Int J Phytoremediation; 2003; 5(2):89-103. PubMed ID: 12929493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.
    Shelmerdine PA; Black CR; McGrath SP; Young SD
    Environ Pollut; 2009 May; 157(5):1589-96. PubMed ID: 19171413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT; Truong P; Mammucari R; Foster N
    Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an ecotype of brake-fern, Pteris vittata, for arsenic tolerance and accumulation in plant biomass.
    Sarangi BK; Chakrabarti T
    Tsitol Genet; 2008; 42(5):16-31. PubMed ID: 19140437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system.
    Ouyang Y
    Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern).
    Zhang W; Cai Y; Downum KR; Ma LQ
    Environ Pollut; 2004 Oct; 131(3):337-45. PubMed ID: 15261396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China.
    Wang HB; Wong MH; Lan CY; Baker AJ; Qin YR; Shu WS; Chen GZ; Ye ZH
    Environ Pollut; 2007 Jan; 145(1):225-33. PubMed ID: 16777301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil.
    An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB
    Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic hyperaccumulation by Pteris vittata and Pityrogramma calomelanos: a comparative study of uptake efficiency in arsenic-treated soils and waters.
    Yong JW; Tan SN; Ng YF; Low KK; Peh SF; Chua JC; Lim AA
    Water Sci Technol; 2010; 61(12):3041-9. PubMed ID: 20555200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.
    Gonzaga MI; Ma LQ; Pacheco EP; dos Santos WM
    Int J Phytoremediation; 2012 Dec; 14(10):939-49. PubMed ID: 22908656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the potential of biological treatment for arsenic contaminated soils and groundwater.
    Wang S; Zhao X
    J Environ Manage; 2009 Jun; 90(8):2367-76. PubMed ID: 19269736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.
    Huang Y; Miyauchi K; Inoue C; Endo G
    Biosci Biotechnol Biochem; 2016; 80(3):614-8. PubMed ID: 26549187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.