BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15196992)

  • 1. Human neuronal nitric oxide synthase can catalyze one-electron reduction of adriamycin: role of flavin domain.
    Fu J; Yamamoto K; Guan ZW; Kimura S; Iyanagi T
    Arch Biochem Biophys; 2004 Jul; 427(2):180-7. PubMed ID: 15196992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human endothelial NOS reductase domain.
    Nishino Y; Yamamoto K; Kimura S; Kikuchi A; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2007 Sep; 465(1):254-65. PubMed ID: 17610838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
    Guan ZW; Iyanagi T
    Arch Biochem Biophys; 2003 Apr; 412(1):65-76. PubMed ID: 12646269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-electron reduction of quinones by the neuronal nitric-oxide synthase reductase domain.
    Matsuda H; Kimura S; Iyanagi T
    Biochim Biophys Acta; 2000 Jul; 1459(1):106-16. PubMed ID: 10924903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
    Matsuda H; Iyanagi T
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductase domain of Drosophila melanogaster nitric-oxide synthase: redox transformations, regulation, and similarity to mammalian homologues.
    Ray SS; Sengupta R; Tiso M; Haque MM; Sahoo R; Konas DW; Aulak K; Regulski M; Tully T; Stuehr DJ; Ghosh S
    Biochemistry; 2007 Oct; 46(42):11865-73. PubMed ID: 17900149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains.
    Guan ZW; Kamatani D; Kimura S; Iyanagi T
    J Biol Chem; 2003 Aug; 278(33):30859-68. PubMed ID: 12777376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azo reduction of methyl red by neuronal nitric oxide synthase: the important role of FMN in catalysis.
    Miyajima M; Sagami I; Daff S; Taiko Migita C; Shimizu T
    Biochem Biophys Res Commun; 2000 Sep; 275(3):752-8. PubMed ID: 10973794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain.
    Welland A; Garnaud PE; Kitamura M; Miles CS; Daff S
    Biochemistry; 2008 Sep; 47(37):9771-80. PubMed ID: 18717591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EPR spectroscopic characterization of neuronal NO synthase.
    Galli C; MacArthur R; Abu-Soud HM; Clark P; Steuhr DJ; Brudvig GW
    Biochemistry; 1996 Feb; 35(8):2804-10. PubMed ID: 8611587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain.
    Iyanagi T
    Biochem Biophys Res Commun; 2005 Dec; 338(1):520-8. PubMed ID: 16125667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization.
    Brunner K; Tortschanoff A; Hemmens B; Andrew PJ; Mayer B; Kungl AJ
    Biochemistry; 1998 Dec; 37(50):17545-53. PubMed ID: 9860870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-binding sites of calmodulin and electron transfer by inducible nitric oxide synthase.
    Gribovskaja I; Brownlow KC; Dennis SJ; Rosko AJ; Marletta MA; Stevens-Truss R
    Biochemistry; 2005 May; 44(20):7593-601. PubMed ID: 15896003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
    Welland A; Daff S
    FEBS J; 2010 Sep; 277(18):3833-43. PubMed ID: 20718865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.