BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 15197165)

  • 1. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model.
    Duarte NC; Herrgård MJ; Palsson BØ
    Genome Res; 2004 Jul; 14(7):1298-309. PubMed ID: 15197165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae.
    Förster J; Famili I; Palsson BO; Nielsen J
    OMICS; 2003; 7(2):193-202. PubMed ID: 14506848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network.
    Förster J; Famili I; Fu P; Palsson BØ; Nielsen J
    Genome Res; 2003 Feb; 13(2):244-53. PubMed ID: 12566402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism.
    Nookaew I; Jewett MC; Meechai A; Thammarongtham C; Laoteng K; Cheevadhanarak S; Nielsen J; Bhumiratana S
    BMC Syst Biol; 2008 Aug; 2():71. PubMed ID: 18687109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae.
    North M; Steffen J; Loguinov AV; Zimmerman GR; Vulpe CD; Eide DJ
    PLoS Genet; 2012; 8(6):e1002699. PubMed ID: 22685415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.
    Herrgård MJ; Lee BS; Portnoy V; Palsson BØ
    Genome Res; 2006 May; 16(5):627-35. PubMed ID: 16606697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae.
    Jo WJ; Kim JH; Oh E; Jaramillo D; Holman P; Loguinov AV; Arkin AP; Nislow C; Giaever G; Vulpe CD
    BMC Genomics; 2009 Mar; 10():130. PubMed ID: 19321002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of gene expression data into genome-scale metabolic models.
    Akesson M; Förster J; Nielsen J
    Metab Eng; 2004 Oct; 6(4):285-93. PubMed ID: 15491858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of yeast m
    Yadav PK; Rajvanshi PK; Rajasekharan R
    Curr Genet; 2018 Apr; 64(2):417-422. PubMed ID: 29043484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connecting extracellular metabolomic measurements to intracellular flux states in yeast.
    Mo ML; Palsson BO; Herrgård MJ
    BMC Syst Biol; 2009 Mar; 3():37. PubMed ID: 19321003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale.
    Beyer A; Hollunder J; Nasheuer HP; Wilhelm T
    Mol Cell Proteomics; 2004 Nov; 3(11):1083-92. PubMed ID: 15326222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of proteins between the endoplasmic reticulum and Golgi complex.
    Pelham HR
    Curr Opin Cell Biol; 1991 Aug; 3(4):585-91. PubMed ID: 1663369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulation in response to overexpression of cytochrome P450 and proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae.
    Zimmer T; Ogura A; Takewaka T; Zimmer RM; Ohta A; Takagi M
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):1930-6. PubMed ID: 11055398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites.
    John Peter AT; Herrmann B; Antunes D; Rapaport D; Dimmer KS; Kornmann B
    J Cell Biol; 2017 Oct; 216(10):3219-3229. PubMed ID: 28864540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast.
    Townsley FM; Pelham HR
    Eur J Cell Biol; 1994 Jun; 64(1):211-6. PubMed ID: 7957309
    [No Abstract]   [Full Text] [Related]  

  • 16. Yeast peroxisomes: How are they formed and how do they grow?
    Akşit A; van der Klei IJ
    Int J Biochem Cell Biol; 2018 Dec; 105():24-34. PubMed ID: 30268746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Validated Set of Fluorescent-Protein-Based Markers for Major Organelles in Yeast (Saccharomyces cerevisiae).
    Zhu J; Zhang ZT; Tang SW; Zhao BS; Li H; Song JZ; Li D; Xie Z
    mBio; 2019 Sep; 10(5):. PubMed ID: 31481383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Localization Study of Yeast Pex11 Identifies Peroxisome-Mitochondria Interactions through the ERMES Complex.
    Mattiazzi Ušaj M; Brložnik M; Kaferle P; Žitnik M; Wolinski H; Leitner F; Kohlwein SD; Zupan B; Petrovič U
    J Mol Biol; 2015 Jun; 427(11):2072-87. PubMed ID: 25769804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxins Pex30 and Pex29 Dynamically Associate with Reticulons to Regulate Peroxisome Biogenesis from the Endoplasmic Reticulum.
    Mast FD; Jamakhandi A; Saleem RA; Dilworth DJ; Rogers RS; Rachubinski RA; Aitchison JD
    J Biol Chem; 2016 Jul; 291(30):15408-27. PubMed ID: 27129769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network.
    Featherstone DE; Broadie K
    Bioessays; 2002 Mar; 24(3):267-74. PubMed ID: 11891763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.