These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15197244)

  • 1. Quantification of the cytoplasmic spaces of living cells with EGFP reveals arrestin-EGFP to be in disequilibrium in dark adapted rod photoreceptors.
    Peet JA; Bragin A; Calvert PD; Nikonov SS; Mani S; Zhao X; Besharse JC; Pierce EA; Knox BE; Pugh EN
    J Cell Sci; 2004 Jun; 117(Pt 14):3049-59. PubMed ID: 15197244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrestin migrates in photoreceptors in response to light: a study of arrestin localization using an arrestin-GFP fusion protein in transgenic frogs.
    Peterson JJ; Tam BM; Moritz OL; Shelamer CL; Dugger DR; McDowell JH; Hargrave PA; Papermaster DS; Smith WC
    Exp Eye Res; 2003 May; 76(5):553-63. PubMed ID: 12697419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for cytoskeletal elements in the light-driven translocation of proteins in rod photoreceptors.
    Peterson JJ; Orisme W; Fellows J; McDowell JH; Shelamer CL; Dugger DR; Smith WC
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):3988-98. PubMed ID: 16249472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV; Sezate SS; Cao W; McGinnis JF
    Mol Vis; 2004 Sep; 10():672-81. PubMed ID: 15467522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light.
    Haeri M; Calvert PD; Solessio E; Pugh EN; Knox BE
    PLoS One; 2013; 8(11):e80059. PubMed ID: 24260336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeleton participation in subcellular trafficking of signal transduction proteins in rod photoreceptor cells.
    McGinnis JF; Matsumoto B; Whelan JP; Cao W
    J Neurosci Res; 2002 Feb; 67(3):290-7. PubMed ID: 11813233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural analysis of arrestin distribution in mouse photoreceptors during dark/light cycle.
    Nir I; Ransom N
    Exp Eye Res; 1993 Sep; 57(3):307-18. PubMed ID: 8224018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions.
    Nair KS; Hanson SM; Mendez A; Gurevich EV; Kennedy MJ; Shestopalov VI; Vishnivetskiy SA; Chen J; Hurley JB; Gurevich VV; Slepak VZ
    Neuron; 2005 May; 46(4):555-67. PubMed ID: 15944125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CXCR2 inverse agonism detected by arrestin redistribution.
    Kredel S; Wolff M; Wiedenmann J; Moepps B; Nienhaus GU; Gierschik P; Kistler B; Heilker R
    J Biomol Screen; 2009 Oct; 14(9):1076-91. PubMed ID: 19773589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the contribution of known cis-elements in the mouse cone arrestin gene to its cone-specific expression.
    Pickrell SW; Zhu X; Wang X; Craft CM
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):3877-84. PubMed ID: 15505032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration.
    Lin-Jones J; Parker E; Wu M; Knox BE; Burnside B
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3614-21. PubMed ID: 12882815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia.
    Najafi M; Maza NA; Calvert PD
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):203-8. PubMed ID: 22184246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells.
    Coleman JE; Semple-Rowland SL
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):12-6. PubMed ID: 15623748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent compartmentalization of transducin in rod photoreceptors.
    Artemyev NO
    Mol Neurobiol; 2008 Feb; 37(1):44-51. PubMed ID: 18425604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrestin-1 expression level in rods: balancing functional performance and photoreceptor health.
    Song X; Vishnivetskiy SA; Seo J; Chen J; Gurevich EV; Gurevich VV
    Neuroscience; 2011 Feb; 174():37-49. PubMed ID: 21075174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrestin translocation in rod photoreceptors.
    Smith WC; Peterson JJ; Orisme W; Dinculescu A
    Adv Exp Med Biol; 2006; 572():455-64. PubMed ID: 17249609
    [No Abstract]   [Full Text] [Related]  

  • 19. Light-dependent translocation of arrestin in rod photoreceptors is signaled through a phospholipase C cascade and requires ATP.
    Orisme W; Li J; Goldmann T; Bolch S; Wolfrum U; Smith WC
    Cell Signal; 2010 Mar; 22(3):447-56. PubMed ID: 19887106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.
    Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.