These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15198036)

  • 21. Amino acids in the rhizosphere: from plants to microbes.
    Moe LA
    Am J Bot; 2013 Sep; 100(9):1692-705. PubMed ID: 23956051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere.
    Poll J; Marhan S; Haase S; Hallmann J; Kandeler E; Ruess L
    FEMS Microbiol Ecol; 2007 Dec; 62(3):268-79. PubMed ID: 17916076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities.
    Wu WX; Liu W; Lu HH; Chen YX; Medha D; Janice T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):93-102. PubMed ID: 19049503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant enhanced degradation of phenanthrene in the contaminated soil.
    Liao M; Xie XM
    J Environ Sci (China); 2006; 18(3):510-3. PubMed ID: 17294648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering bacterial competitiveness and persistence in the phytosphere.
    Savka MA; Dessaux Y; Oger P; Rossbach S
    Mol Plant Microbe Interact; 2002 Sep; 15(9):866-74. PubMed ID: 12236593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant host habitat and root exudates shape soil bacterial community structure.
    Haichar FZ; Marol C; Berge O; Rangel-Castro JI; Prosser JI; Balesdent J; Heulin T; Achouak W
    ISME J; 2008 Dec; 2(12):1221-30. PubMed ID: 18754043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The microbial ecology of electrigenic microorganisms in plant-rhizosphere based microbial fuel cells.
    Friedrich MW
    Commun Agric Appl Biol Sci; 2011; 76(2):25-6. PubMed ID: 21404927
    [No Abstract]   [Full Text] [Related]  

  • 28. [Population structure and ecological distribution of rhizospheric microorganisms of Angelica sinensis].
    Jiang S; Duan J; Yan H; Yu G
    Zhongguo Zhong Yao Za Zhi; 2009 Jun; 34(12):1483-8. PubMed ID: 19777829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial activity related to N cycling in the rhizosphere of maize stressed by heavy metals.
    Yang Y; Chen YX; Tian GM; Zhang ZJ
    J Environ Sci (China); 2005; 17(3):448-51. PubMed ID: 16083122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studying plant-microbe interactions using stable isotope technologies.
    Prosser JI; Rangel-Castro JI; Killham K
    Curr Opin Biotechnol; 2006 Feb; 17(1):98-102. PubMed ID: 16413769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic behavior of bacterial biological control agents in soil and plant rhizospheres.
    Pielach CA; Roberts DP; Kobayashi DY
    Adv Appl Microbiol; 2008; 65():199-215. PubMed ID: 19026866
    [No Abstract]   [Full Text] [Related]  

  • 32. Interactions between soil and tree roots accelerate long-term soil carbon decomposition.
    Dijkstra FA; Cheng W
    Ecol Lett; 2007 Nov; 10(11):1046-53. PubMed ID: 17910623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.
    Long XX; Zhang YG; Jun D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):460-7. PubMed ID: 19183820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Microevolution of nodule bacteria in emergence of mutants with changed viability in the "plant-soil" system].
    Provorov NA; Vorob'ev NI
    Genetika; 2003 Dec; 39(12):1594-605. PubMed ID: 14964825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multitrophic interactions in the rhizosphere Rhizosphere microbiology: at the interface of many disciplines and expertises.
    Hartmann A; Lemanceau P; Prosser JI
    FEMS Microbiol Ecol; 2008 Aug; 65(2):179. PubMed ID: 18713129
    [No Abstract]   [Full Text] [Related]  

  • 36. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration.
    Wasaki J; Rothe A; Kania A; Neumann G; Römheld V; Shinano T; Osaki M; Kandeler E
    J Environ Qual; 2005; 34(6):2157-66. PubMed ID: 16275716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis.
    Park MS; Jung SR; Lee MS; Kim KO; Do JO; Lee KH; Kim SB; Bae KS
    J Microbiol; 2005 Jun; 43(3):219-27. PubMed ID: 15995638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial co-operation in the rhizosphere.
    Barea JM; Pozo MJ; Azcón R; Azcón-Aguilar C
    J Exp Bot; 2005 Jul; 56(417):1761-78. PubMed ID: 15911555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots.
    Albareda M; Dardanelli MS; Sousa C; Megías M; Temprano F; Rodríguez-Navarro DN
    FEMS Microbiol Lett; 2006 Jun; 259(1):67-73. PubMed ID: 16684104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.