BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15198223)

  • 1. Determination of muscle architecture and fiber characteristics of the superficial and deep digital flexor muscles in the forelimbs of adult horses.
    Zarucco L; Taylor KT; Stover SM
    Am J Vet Res; 2004 Jun; 65(6):819-28. PubMed ID: 15198223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of passive mechanical properties of the superficial and deep digital flexor muscle-ligament-tendon complexes in the forelimbs of horses.
    Swanstrom MD; Stover SM; Hubbard M; Hawkins DA
    Am J Vet Res; 2004 Feb; 65(2):188-97. PubMed ID: 14974577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architectural properties of distal forelimb muscles in horses, Equus caballus.
    Brown NA; Kawcak CE; McIlwraith CW; Pandy MG
    J Morphol; 2003 Oct; 258(1):106-14. PubMed ID: 12905538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive and active mechanical properties of the superficial and deep digital flexor muscles in the forelimbs of anesthetized Thoroughbred horses.
    Swanstrom MD; Zarucco L; Stover SM; Hubbard M; Hawkins DA; Driessen B; Steffey EP
    J Biomech; 2005 Mar; 38(3):579-86. PubMed ID: 15652557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonographic cross-sectional area and mean echogenicity of the superficial and deep digital flexor tendons in 50 trained thoroughbred racehorses.
    Gillis C; Meagher DM; Cloninger A; Locatelli L; Willits N
    Am J Vet Res; 1995 Oct; 56(10):1265-9. PubMed ID: 8928940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile behavior of the forelimb digital flexors during steady-state locomotion in horses (Equus caballus): an initial test of muscle architectural hypotheses about in vivo function.
    Butcher MT; Hermanson JW; Ducharme NG; Mitchell LM; Soderholm LV; Bertram JE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jan; 152(1):100-14. PubMed ID: 18835360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculated forelimb flexor tendon forces in horses with experimentally induced superficial digital flexor tendinitis and the effects of application of heel wedges.
    Meershoek LS; Lanovaz JL; Schamhardt HC; Clayton HM
    Am J Vet Res; 2002 Mar; 63(3):432-7. PubMed ID: 11911580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.
    Butcher MT; Chase PB; Hermanson JW; Clark AN; Brunet NM; Bertram JE
    Am J Physiol Regul Integr Comp Physiol; 2010 Oct; 299(4):R996-R1005. PubMed ID: 20702801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moment arms about the carpal and metacarpophalangeal joints for flexor and extensor muscles in equine forelimbs.
    Brown NA; Pandy MG; Buford WL; Kawcak CE; McIlwraith CW
    Am J Vet Res; 2003 Mar; 64(3):351-7. PubMed ID: 12661877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forelimb tendon loading during jump landings and the influence of fence height.
    Meershoek LS; Schamhardt HC; Roepstorff L; Johnston C
    Equine Vet J Suppl; 2001 Apr; (33):6-10. PubMed ID: 11721571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architecture of the human jaw-closing and jaw-opening muscles.
    Van Eijden TM; Korfage JA; Brugman P
    Anat Rec; 1997 Jul; 248(3):464-74. PubMed ID: 9214565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model formulation and determination of in vitro parameters of a noninvasive method to calculate flexor tendon forces in the equine forelimb.
    Meershoek LS; van den Bogert AJ; Schamhardt HC
    Am J Vet Res; 2001 Oct; 62(10):1585-93. PubMed ID: 11592324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional specialisation of pelvic limb anatomy in horses (Equus caballus).
    Payne RC; Hutchinson JR; Robilliard JJ; Smith NC; Wilson AM
    J Anat; 2005 Jun; 206(6):557-74. PubMed ID: 15960766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superficial digital flexor tendon lesions in racehorses as a sequela to muscle fatigue: a preliminary study.
    Butcher MT; Hermanson JW; Ducharme NG; Mitchell LM; Soderholm LV; Bertram JE
    Equine Vet J; 2007 Nov; 39(6):540-5. PubMed ID: 18065313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four forearm flexor muscles of the horse, Equus caballus: anatomy and histochemistry.
    Hermanson JW; Cobb MA
    J Morphol; 1992 Jun; 212(3):269-80. PubMed ID: 1507240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles.
    Liu AT; Liu BL; Lu LX; Chen G; Yu DZ; Zhu L; Guo R; Dang RS; Jiang H
    J Anat; 2014 Jul; 225(1):12-8. PubMed ID: 24836406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does passive lengthening change the architecture of the human medial gastrocnemius muscle?
    Bolsterlee B; D'Souza A; Gandevia SC; Herbert RD
    J Appl Physiol (1985); 2017 Apr; 122(4):727-738. PubMed ID: 28104754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of cat medial gastrocnemius fascicle lengths during dynamic contractions.
    Kaya M; Carvalho W; Leonard T; Herzog W
    J Biomech; 2002 Jul; 35(7):893-902. PubMed ID: 12052391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle architecture of biceps brachii, triceps brachii and supraspinatus in the horse.
    Watson JC; Wilson AM
    J Anat; 2007 Jan; 210(1):32-40. PubMed ID: 17229281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer.
    Regev GJ; Kim CW; Tomiya A; Lee YP; Ghofrani H; Garfin SR; Lieber RL; Ward SR
    Spine (Phila Pa 1976); 2011 Dec; 36(26):E1666-74. PubMed ID: 21415810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.