These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of C-peptide on microvascular blood flow and blood hemorheology. Forst T; Kunt T Exp Diabesity Res; 2004; 5(1):51-64. PubMed ID: 15198371 [TBL] [Abstract][Full Text] [Related]
3. The effects ex vivo and in vitro of insulin and C-peptide on Na/K adenosine triphosphatase activity in red blood cell membranes of type 1 diabetic patients. Djemli-Shipkolye A; Gallice P; Coste T; Jannot MF; Tsimaratos M; Raccah D; Vague P Metabolism; 2000 Jul; 49(7):868-72. PubMed ID: 10909997 [TBL] [Abstract][Full Text] [Related]
4. [Genetic factors, Na K ATPase activity and neuropathy in diabetics]. Vague P; Dufayet D; Lamotte MF; Mouchot C; Raccah D Bull Acad Natl Med; 1997 Dec; 181(9):1811-21; discussion 1821-3. PubMed ID: 9611401 [TBL] [Abstract][Full Text] [Related]
5. Hypothesis: low Na/K-ATPase activity in the red cell membrane, a potential marker of the predisposition to diabetic neuropathy. Raccah D; Gallice P; Pouget J; Vague P Diabete Metab; 1992; 18(3):236-41. PubMed ID: 1327887 [TBL] [Abstract][Full Text] [Related]
6. Proinsulin C-peptide prevents type-1 diabetes-induced decrease of renal Na+-K+-ATPase alpha1-subunit in rats. Nordquist L; Shimada K; Ishii T; Furuya DT; Kamikawa A; Kimura K Diabetes Metab Res Rev; 2010 Mar; 26(3):193-9. PubMed ID: 20225182 [TBL] [Abstract][Full Text] [Related]
7. Na,K-atpase alterations in diabetic rats: relationship with lipid metabolism and nerve physiological parameters. Djemli-Shipkolye A; Coste T; Raccah D; Vague P; Pieroni G; Gerbi A Cell Mol Biol (Noisy-le-grand); 2001 Mar; 47(2):297-304. PubMed ID: 11355004 [TBL] [Abstract][Full Text] [Related]
8. Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+-ATPase activity in diabetes mellitus type I. Forst T; De La Tour DD; Kunt T; Pfützner A; Goitom K; Pohlmann T; Schneider S; Johansson BL; Wahren J; Löbig M; Engelbach M; Beyer J; Vague P Clin Sci (Lond); 2000 Mar; 98(3):283-90. PubMed ID: 10677386 [TBL] [Abstract][Full Text] [Related]
9. Effect of experimental diabetes on Na/K-ATPase activity in red blood cells, peripheral nerve and kidney. Raccah D; Lamotte-Jannot MF; Issautier T; Vague P Diabete Metab; 1994; 20(3):271-4. PubMed ID: 8001715 [TBL] [Abstract][Full Text] [Related]
10. Differential effect of omega3 PUFA supplementations on Na,K-ATPase and Mg-ATPase activities: possible role of the membrane omega6/omega3 ratio. Djemli-Shipkolye A; Raccah D; Pieroni G; Vague P; Coste TC; Gerbi A J Membr Biol; 2003 Jan; 191(1):37-47. PubMed ID: 12532275 [TBL] [Abstract][Full Text] [Related]
11. Captopril ameliorates the decreased Na+,K(+)-ATPase activity in the retina of streptozotocin-induced diabetic rats. Ottlecz A; Bensaoula T Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1633-41. PubMed ID: 8675407 [TBL] [Abstract][Full Text] [Related]
12. Angiotensin-converting enzyme activity in retinas of streptozotocin-induced and Zucker diabetic rats. The effect of angiotensin II on Na+,K(+)-ATPase activity. Ottlecz A; Bensaoula T; Eichberg J; Peterson RG Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2157-64. PubMed ID: 8843902 [TBL] [Abstract][Full Text] [Related]
13. Type 1 diabetic neuropathy and C-peptide. Sima AA; Zhang W; Grunberger G Exp Diabesity Res; 2004; 5(1):65-77. PubMed ID: 15198372 [TBL] [Abstract][Full Text] [Related]
14. Electrolytes and NA(+)-K(+)-ATPase: potential risk factors for the development of diabetic nephropathy. Shahid SM; Mahboob T Pak J Pharm Sci; 2008 Apr; 21(2):172-9. PubMed ID: 18390448 [TBL] [Abstract][Full Text] [Related]
15. Effect of chronic hyperglycemia and vanadate treatment on erythrocyte Na/K-ATpase and Mg-ATpase in streptozotocin diabetic rats. Totan AR; Greabu M Acta Pol Pharm; 2002; 59(4):307-11. PubMed ID: 12403306 [TBL] [Abstract][Full Text] [Related]
16. Reduction of erythrocyte (Na(+)-K+)ATPase activity in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Mimura M; Makino H; Kanatsuka A; Asai T; Yoshida S Horm Metab Res; 1994 Jan; 26(1):33-8. PubMed ID: 8150421 [TBL] [Abstract][Full Text] [Related]
17. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Galuska D; Kotova O; Barrès R; Chibalina D; Benziane B; Chibalin AV Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E38-49. PubMed ID: 19366873 [TBL] [Abstract][Full Text] [Related]
18. Relation of erythrocyte Na+-K+ ATPase activity and cholesterol and oxidative stress in patients with type 2 diabetes mellitus. Konukoglu D; Kemerli GD; Sabuncu T; Hatemi H Clin Invest Med; 2003 Dec; 26(6):279-84. PubMed ID: 14690302 [TBL] [Abstract][Full Text] [Related]
19. Effect of aldose reductase inhibitor (Ponalrestat) on erythrocyte Na,K-ATPase activity in non-insulin-dependent diabetic patients with polyneuropathy. Umeda F; Noda K; Hashimoto T; Yamashita T; Nawata H Diabetes Res; 1989 Nov; 12(3):125-9. PubMed ID: 2561396 [TBL] [Abstract][Full Text] [Related]
20. Electrolytes and sodium transport mechanism in diabetes mellitus. Shahid SM; Rafique R; Mahboob T Pak J Pharm Sci; 2005 Apr; 18(2):6-10. PubMed ID: 16431390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]