BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15198638)

  • 1. In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition.
    Schönfeld P; Kahlert S; Reiser G
    Biochem J; 2004 Oct; 383(Pt 1):121-8. PubMed ID: 15198638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes.
    Kahlert S; Schönfeld P; Reiser G
    Neurobiol Dis; 2005 Feb; 18(1):110-8. PubMed ID: 15649701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the cytotoxicity of branched-chain phytanic acid with mitochondria and rat brain astrocytes.
    Schönfeld P; Kahlert S; Reiser G
    Exp Gerontol; 2006 Jul; 41(7):688-96. PubMed ID: 16616447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes.
    Rönicke S; Kruska N; Kahlert S; Reiser G
    Neurobiol Dis; 2009 Nov; 36(2):401-10. PubMed ID: 19703563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytanic Acid toxicity: implications for the permeability of the inner mitochondrial membrane to ions.
    Schönfeld P
    Toxicol Mech Methods; 2004; 14(1-2):47-52. PubMed ID: 20021122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria.
    Schönfeld P; Struy H
    FEBS Lett; 1999 Aug; 457(2):179-83. PubMed ID: 10471774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment.
    Reiser G; Schönfeld P; Kahlert S
    Int J Dev Neurosci; 2006; 24(2-3):113-22. PubMed ID: 16386870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2+.
    Schild L; Reiser G
    FEBS J; 2005 Jul; 272(14):3593-601. PubMed ID: 16008559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity.
    García N; Zazueta C; Pavón N; Chávez E
    Mitochondrion; 2005 Aug; 5(4):272-81. PubMed ID: 16050990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium-dependent apoptosis of cerebellar granule cells.
    Atlante A; Bobba A; de Bari L; Fontana F; Calissano P; Marra E; Passarella S
    J Neurochem; 2006 May; 97(4):1166-81. PubMed ID: 16606362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of mitochondrial bioenergetics and calcium homeostasis by phytanic acid in the heart: Potential relevance for the cardiomyopathy in Refsum disease.
    Zemniaçak ÂB; Roginski AC; Ribeiro RT; Bender JG; Marschner RA; Wajner SM; Wajner M; Amaral AU
    Biochim Biophys Acta Bioenerg; 2023 Apr; 1864(2):148961. PubMed ID: 36812958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier.
    Schönfeld P; Bohnensack R
    FEBS Lett; 1997 Dec; 420(2-3):167-70. PubMed ID: 9459303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Modification of energy supply by pancreatic mitochondria in acute experimental pancreatitis].
    Halangk W; Matthias R; Nedelev B; Schild L; Meyer F; Schulz HU; Lippert H
    Zentralbl Chir; 1997; 122(4):305-8. PubMed ID: 9221643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrolein induces oxidative stress in brain mitochondria.
    Luo J; Shi R
    Neurochem Int; 2005 Feb; 46(3):243-52. PubMed ID: 15670641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats.
    Busanello EN; Viegas CM; Moura AP; Tonin AM; Grings M; Vargas CR; Wajner M
    Brain Res; 2010 Sep; 1352():231-8. PubMed ID: 20624373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.
    Kruska N; Reiser G
    Neurobiol Dis; 2011 Aug; 43(2):465-72. PubMed ID: 21570468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phytanic acid on the vitamin E status, lipid composition and physical properties of retinal cell membranes: implications for adult Refsum disease.
    Young SP; Johnson AW; Muller DP
    Clin Sci (Lond); 2001 Dec; 101(6):697-705. PubMed ID: 11724659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are fentanyl and remifentanil safe opioids for rat brain mitochondrial bioenergetics?
    Vilela SM; Santos DJ; Félix L; Almeida JM; Antunes L; Peixoto F
    Mitochondrion; 2009 Jul; 9(4):247-53. PubMed ID: 19303949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evidence that pristanic acid disrupts mitochondrial homeostasis in brain of young rats.
    Busanello EN; Amaral AU; Tonin AM; Grings M; Moura AP; Eichler P; Vargas CR; Wajner M
    J Neurosci Res; 2012 Mar; 90(3):597-605. PubMed ID: 22183871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.