BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 15198823)

  • 21. A model for the explanation of the thermally induced increase of the overall fluorescence in tryptophan-X peptides.
    Brancaleon L; Gasparini G; Manfredi M; Mazzini A
    Arch Biochem Biophys; 1997 Dec; 348(1):125-33. PubMed ID: 9390182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIAGlc.
    Xu J; Toptygin D; Graver KJ; Albertini RA; Savtchenko RS; Meadow ND; Roseman S; Callis PR; Brand L; Knutson JR
    J Am Chem Soc; 2006 Feb; 128(4):1214-21. PubMed ID: 16433538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-induced conformational change in fragment 1-86 of factor X.
    Häfner A; Merola F; Duportail G; Hutterer R; Schneider FW; Hof M
    Biopolymers; 2000; 57(4):226-34. PubMed ID: 10861387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Structural-dynamic properties of the tryptophan residue environment in melittin].
    Demchenko AP; Ladokhin AS; Kostrzhevskaia EG
    Mol Biol (Mosk); 1987; 21(3):663-71. PubMed ID: 3657767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan side chain conformers monitored by NMR and time-resolved fluorescence spectroscopies.
    Julien O; Wang G; Jonckheer A; Engelborghs Y; Sykes BD
    Proteins; 2012 Jan; 80(1):239-45. PubMed ID: 22072563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra.
    Robbins DJ; Deibel MR; Barkley MD
    Biochemistry; 1985 Dec; 24(25):7250-7. PubMed ID: 4084579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine.
    Ambroz M; MacRobert AJ; Morgan J; Rumbles G; Foley MS; Phillips D
    J Photochem Photobiol B; 1994 Feb; 22(2):105-17. PubMed ID: 8176544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shedding light on biomolecule conformational dynamics using fluorescence measurements of trapped ions.
    Iavarone AT; Duft D; Parks JH
    J Phys Chem A; 2006 Nov; 110(47):12714-27. PubMed ID: 17125284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes.
    Kress M; Meier T; Steiner R; Dolp F; Erdmann R; Ortmann U; Rück A
    J Biomed Opt; 2003 Jan; 8(1):26-32. PubMed ID: 12542376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra.
    Lakowicz JR; Jayaweera R; Szmacinski H; Wiczk W
    Photochem Photobiol; 1989 Oct; 50(4):541-6. PubMed ID: 2594838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulating FRET from tryptophan: is the rotamer model correct?
    Beierlein FR; Othersen OG; Lanig H; Schneider S; Clark T
    J Am Chem Soc; 2006 Apr; 128(15):5142-52. PubMed ID: 16608350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophobic clustering in acid-denatured IL-2 and fluorescence of a Trp NH-pi H-bond.
    Nanda V; Liang SM; Brand L
    Biochem Biophys Res Commun; 2000 Dec; 279(3):770-8. PubMed ID: 11162427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multivariate analysis of emission decay matrices for distinguishing ground state heterogeneity and excited state reactions of tryptophan.
    Roach CA
    Analyst; 2011 Jul; 136(13):2770-4. PubMed ID: 21625673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan as a probe for acid-base equilibria in peptides.
    Marquezin CA; Hirata IY; Juliano L; Ito AS
    Biopolymers; 2003; 71(5):569-76. PubMed ID: 14635097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification.
    Molla AR; Maity SS; Ghosh S; Mandal DK
    Biochimie; 2009 Jul; 91(7):857-67. PubMed ID: 19383525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast excited-state intramolecular proton transfer and subnanosecond dynamic stokes shift of time-resolved fluorescence spectra of the 5-methoxysalicylic acid/diethyl ether complex.
    Smoluch M; Joshi H; Gerssen A; Gooijer C; van der Zwan G
    J Phys Chem A; 2005 Feb; 109(4):535-41. PubMed ID: 16833377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global and target analysis of time-resolved fluorescence spectra of Di-9H-fluoren-9-yldimethylsilane: dynamics and energetics for intramolecular excimer formation.
    Boo BH; Kang D
    J Phys Chem A; 2005 May; 109(19):4280-4. PubMed ID: 16833757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface.
    Sarkar R; Ghosh M; Pal SK
    J Photochem Photobiol B; 2005 Feb; 78(2):93-8. PubMed ID: 15664495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.
    Nanjo D; Hosoi H; Fujino T; Tahara T; Korenaga T
    J Phys Chem B; 2007 Mar; 111(11):2759-64. PubMed ID: 17388434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.