BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 15198926)

  • 1. Thiophosphorylation of myosin light chain increases rigor stiffness of rabbit smooth muscle.
    Khromov AS; Somlyo AV; Somlyo AP
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):345-50. PubMed ID: 9763625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MYL9 deficiency is neonatal lethal in mice due to abnormalities in the lung and the muscularis propria of the bladder and intestine.
    Huang CH; Schuring J; Skinner JP; Mok L; Chong MMW
    PLoS One; 2022; 17(7):e0270820. PubMed ID: 35802750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct investigation of cell contraction signal networks by light-based perturbation methods.
    Nalbant P; Wagner J; Dehmelt L
    Pflugers Arch; 2023 Dec; 475(12):1439-1452. PubMed ID: 37851146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electroacupuncture on bladder dysfunction and the expression of PACAP38 in a diabetic rat model.
    Han X; Chen Y; Ha L; Yang J; Wang F; Chen H; Zhou Q; Long C; Qiu X; Chen Q
    Front Physiol; 2022; 13():1008269. PubMed ID: 36699677
    [No Abstract]   [Full Text] [Related]  

  • 5. Ossabaw Pig Demonstrates Detrusor Fibrosis and Detrusor Underactivity Associated with Oxidative Stress in Metabolic Syndrome.
    Powell CR; Kim A; Roth J; Byrd JP; Mohammad K; Alloosh M; Vittal R; Sturek M
    Comp Med; 2020 Oct; 70(5):329-334. PubMed ID: 32972487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Altered Signaling on EFS-Induced Colon Contractility in Diabetic Rats.
    Thein W; Po WW; Kim DM; Sohn UD
    Biomol Ther (Seoul); 2020 Jul; 28(4):328-336. PubMed ID: 32126734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detrusor contractility to parasympathetic mediators is differentially altered in the compensated and decompensated states of diabetic bladder dysfunction.
    Klee NS; Moreland RS; Kendig DM
    Am J Physiol Renal Physiol; 2019 Aug; 317(2):F388-F398. PubMed ID: 31141399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urothelial Senescence in the Pathophysiology of Diabetic Bladder Dysfunction-A Novel Hypothesis.
    Klee NS; McCarthy CG; Lewis S; McKenzie JL; Vincent JE; Webb RC
    Front Surg; 2018; 5():72. PubMed ID: 30564582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Caveolin-3 and HCN is involved in the pathogenesis of diabetic cystopathy.
    Dong X; Song Q; Zhu J; Zhao J; Liu Q; Zhang T; Long Z; Li J; Wu C; Wang Q; Hu X; Damaser M; Li L
    Sci Rep; 2016 Apr; 6():24844. PubMed ID: 27122250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of type II diabetes on male rat bladder contractility.
    Kendig DM; Ets HK; Moreland RS
    Am J Physiol Renal Physiol; 2016 May; 310(9):F909-22. PubMed ID: 26823284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does diabetes affect the distribution and number of interstitial cells and neuronal tissue in the ureter, bladder, prostate, and urethra of humans?
    Canda AE; Dogan H; Kandemir O; Atmaca AF; Akbulut Z; Balbay MD
    Cent European J Urol; 2014; 67(4):366-74. PubMed ID: 25667756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin light chain kinase is involved in the mechanism of gastrointestinal dysfunction in diabetic rats.
    Hu W; Feng P
    Dig Dis Sci; 2012 May; 57(5):1197-202. PubMed ID: 22302242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Urinary Bladder Strip Relaxation by the β-Adrenoceptor Agonist Isoprenaline: Methodological Considerations and Effects of Gender and Age.
    Schneider T; Fetscher C; Michel MC
    Front Pharmacol; 2011; 2():11. PubMed ID: 21687506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional, morphological and molecular characterization of bladder dysfunction in streptozotocin-induced diabetic mice: evidence of a role for L-type voltage-operated Ca2+ channels.
    Leiria LO; Mónica FZ; Carvalho FD; Claudino MA; Franco-Penteado CF; Schenka A; Grant AD; De Nucci G; Antunes E
    Br J Pharmacol; 2011 Jul; 163(6):1276-88. PubMed ID: 21391978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetic bladder dysfunction: current translational knowledge.
    Daneshgari F; Liu G; Birder L; Hanna-Mitchell AT; Chacko S
    J Urol; 2009 Dec; 182(6 Suppl):S18-26. PubMed ID: 19846137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired coronary microvascular dilation correlates with enhanced vascular smooth muscle MLC phosphorylation in diabetes.
    Clements RT; Sodha NR; Feng J; Boodhwani M; Liu Y; Mieno S; Khabbaz KR; Bianchi C; Sellke FW
    Microcirculation; 2009 Feb; 16(2):193-206. PubMed ID: 19152178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro models: research in physiology and pharmacology of the lower urinary tract.
    Moreland RB
    Br J Pharmacol; 2006 Feb; 147 Suppl 2(Suppl 2):S56-61. PubMed ID: 16465184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetes decreases rabbit bladder smooth muscle contraction while increasing levels of myosin light chain phosphorylation.
    Su X; Changolkar A; Chacko S; Moreland RS
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F690-9. PubMed ID: 15198926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial bladder outlet obstruction alters Ca2+ sensitivity of force, but not of MLC phosphorylation, in bladder smooth muscle.
    Stanton MC; Clement M; Macarak EJ; Zderic SA; Moreland RS
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F703-10. PubMed ID: 12799305
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.