BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15199168)

  • 81. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids.
    Nakabeppu Y; Sakumi K; Sakamoto K; Tsuchimoto D; Tsuzuki T; Nakatsu Y
    Biol Chem; 2006 Apr; 387(4):373-9. PubMed ID: 16606334
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Identification and characterization of OGG1 mutations in patients with Alzheimer's disease.
    Mao G; Pan X; Zhu BB; Zhang Y; Yuan F; Huang J; Lovell MA; Lee MP; Markesbery WR; Li GM; Gu L
    Nucleic Acids Res; 2007; 35(8):2759-66. PubMed ID: 17426120
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Steady-state, pre-steady-state, and single-turnover kinetic measurement for DNA glycosylase activity.
    Sassa A; Beard WA; Shock DD; Wilson SH
    J Vis Exp; 2013 Aug; (78):e50695. PubMed ID: 23995844
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Increased ROS generation in subsets of OGG1 knockout fibroblast cells.
    Bacsi A; Chodaczek G; Hazra TK; Konkel D; Boldogh I
    Mech Ageing Dev; 2007; 128(11-12):637-49. PubMed ID: 18006041
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Ultraviolet-B-induced inactivation of human OGG1, the repair enzyme for removal of 8-oxoguanine in DNA.
    van der Kemp PA; Blais JC; Bazin M; Boiteux S; Santus R
    Photochem Photobiol; 2002 Dec; 76(6):640-8. PubMed ID: 12511044
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Regulation of human MutYH DNA glycosylase by the E3 ubiquitin ligase mule.
    Dorn J; Ferrari E; Imhof R; Ziegler N; Hübscher U
    J Biol Chem; 2014 Mar; 289(10):7049-7058. PubMed ID: 24443563
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Common genetic variants of MUTYH are not associated with cutaneous malignant melanoma: application of molecular screening by means of high-resolution melting technique in a pilot case-control study.
    Santonocito C; Paradisi A; Capizzi R; Torti E; Lanza-Silveri S; Penitente R; Zuppi C; Capoluongo E
    Int J Biol Markers; 2011; 26(1):37-42. PubMed ID: 21279954
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability.
    Kang DM; Shin JI; Kim JB; Lee K; Chung JH; Yang HW; Kim KN; Han YS
    BMC Mol Cell Biol; 2019 Nov; 20(1):54. PubMed ID: 31775627
    [TBL] [Abstract][Full Text] [Related]  

  • 89. An active alternative splicing isoform of human mitochondrial 8-oxoguanine DNA glycosylase (OGG1).
    Furihata C
    Genes Environ; 2015; 37():21. PubMed ID: 27350816
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Modern Approaches to Protein Engineering to Create Enzymes with New Catalytic Properties].
    Tyugashev TE; Fedorova OS; Kuznetsov NA
    Mol Biol (Mosk); 2023; 57(2):209-219. PubMed ID: 37000650
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Understanding the role of the Q338H MUTYH variant in oxidative damage repair.
    Turco E; Ventura I; Minoprio A; Russo MT; Torreri P; Degan P; Molatore S; Ranzani GN; Bignami M; Mazzei F
    Nucleic Acids Res; 2013 Apr; 41(7):4093-103. PubMed ID: 23460202
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Analysis of an anomalous mutant of MutM DNA glycosylase leads to new insights into the catalytic mechanism.
    Nam K; Verdine GL; Karplus M
    J Am Chem Soc; 2009 Dec; 131(51):18208-9. PubMed ID: 19961158
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity.
    Zhu RY; Majumdar C; Khuu C; De Rosa M; Opresko PL; David SS; Kool ET
    ACS Cent Sci; 2020 Oct; 6(10):1735-1742. PubMed ID: 33145410
    [TBL] [Abstract][Full Text] [Related]  

  • 94. MUTYH mediates the toxicity of combined DNA 6-thioguanine and UVA radiation.
    Grasso F; Ruggieri V; De Luca G; Leopardi P; Mancuso MT; Casorelli I; Pichierri P; Karran P; Bignami M
    Oncotarget; 2015 Apr; 6(10):7481-92. PubMed ID: 25638157
    [TBL] [Abstract][Full Text] [Related]  

  • 95. 8-oxoguanine causes spontaneous de novo germline mutations in mice.
    Ohno M; Sakumi K; Fukumura R; Furuichi M; Iwasaki Y; Hokama M; Ikemura T; Tsuzuki T; Gondo Y; Nakabeppu Y
    Sci Rep; 2014 Apr; 4():4689. PubMed ID: 24732879
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mutyh deficiency downregulates mitochondrial fusion proteins and causes cardiac dysfunction via α-ketoglutaric acid reduction with oxidative stress.
    Chen J; Wu X; Wang Y; Pan Y; Ren Y; Nakabeppu Y; Fan Y; Wang Y
    Free Radic Res; 2022 Feb; 56(2):129-142. PubMed ID: 35098839
    [TBL] [Abstract][Full Text] [Related]  

  • 97. MUTYH, an adenine DNA glycosylase, mediates p53 tumor suppression via PARP-dependent cell death.
    Oka S; Leon J; Tsuchimoto D; Sakumi K; Nakabeppu Y
    Oncogenesis; 2014 Oct; 3(10):e121. PubMed ID: 25310643
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A sequence-specific DNA glycosylase mediates restriction-modification in Pyrococcus abyssi.
    Miyazono K; Furuta Y; Watanabe-Matsui M; Miyakawa T; Ito T; Kobayashi I; Tanokura M
    Nat Commun; 2014; 5():3178. PubMed ID: 24458096
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Genome-wide profiling of 8-oxoguanine reveals its association with spatial positioning in nucleus.
    Yoshihara M; Jiang L; Akatsuka S; Suyama M; Toyokuni S
    DNA Res; 2014 Dec; 21(6):603-12. PubMed ID: 25008760
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Oligoribonucleotides containing 8-oxo-7,8-dihydroguanosine and 8-oxo-7,8-dihydro-2'-O-methylguanosine: synthesis and base pairing properties.
    Kim SK; Yokoyama S; Takaku H; Moon BJ
    Bioorg Med Chem Lett; 1998 Apr; 8(8):939-44. PubMed ID: 9871516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.