These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 15199289)
1. What have we learnt about the regulation of phosphate metabolism? Blumsohn A Curr Opin Nephrol Hypertens; 2004 Jul; 13(4):397-401. PubMed ID: 15199289 [TBL] [Abstract][Full Text] [Related]
2. The wrickkened pathways of FGF23, MEPE and PHEX. Rowe PS Crit Rev Oral Biol Med; 2004 Sep; 15(5):264-81. PubMed ID: 15470265 [TBL] [Abstract][Full Text] [Related]
3. New insights into phosphate homeostasis: fibroblast growth factor 23 and frizzled-related protein-4 are phosphaturic factors derived from tumors associated with osteomalacia. Kumar R Curr Opin Nephrol Hypertens; 2002 Sep; 11(5):547-53. PubMed ID: 12187320 [TBL] [Abstract][Full Text] [Related]
4. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Rowe PS Crit Rev Eukaryot Gene Expr; 2012; 22(1):61-86. PubMed ID: 22339660 [TBL] [Abstract][Full Text] [Related]
5. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Quarles LD Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E1-9. PubMed ID: 12791601 [TBL] [Abstract][Full Text] [Related]
6. Phosphatonins: From Discovery to Therapeutics. Kritmetapak K; Kumar R Endocr Pract; 2023 Jan; 29(1):69-79. PubMed ID: 36210014 [TBL] [Abstract][Full Text] [Related]
7. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Sitara D; Razzaque MS; Hesse M; Yoganathan S; Taguchi T; Erben RG; Jüppner H; Lanske B Matrix Biol; 2004 Nov; 23(7):421-32. PubMed ID: 15579309 [TBL] [Abstract][Full Text] [Related]
8. Phosphate diabetes, tubular phosphate reabsorption and phosphatonins. Laroche M; Boyer JF Joint Bone Spine; 2005 Oct; 72(5):376-81. PubMed ID: 16214071 [TBL] [Abstract][Full Text] [Related]
9. Renal phosphate wasting disorders: clinical features and pathogenesis. Brame LA; White KE; Econs MJ Semin Nephrol; 2004 Jan; 24(1):39-47. PubMed ID: 14730508 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. Liu S; Rowe PS; Vierthaler L; Zhou J; Quarles LD J Endocrinol; 2007 Jan; 192(1):261-7. PubMed ID: 17210763 [TBL] [Abstract][Full Text] [Related]
11. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Gattineni J; Baum M Pediatr Nephrol; 2010 Apr; 25(4):591-601. PubMed ID: 19669798 [TBL] [Abstract][Full Text] [Related]
12. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. David V; Martin A; Hedge AM; Drezner MK; Rowe PS Am J Physiol Renal Physiol; 2011 Mar; 300(3):F783-91. PubMed ID: 21177780 [TBL] [Abstract][Full Text] [Related]
13. Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. Fukumoto S; Yamashita T Curr Opin Nephrol Hypertens; 2002 Jul; 11(4):385-9. PubMed ID: 12105387 [TBL] [Abstract][Full Text] [Related]
14. Tumor-induced osteomalacia and the regulation of phosphate homeostasis. Kumar R Bone; 2000 Sep; 27(3):333-8. PubMed ID: 10962341 [TBL] [Abstract][Full Text] [Related]
15. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Shaikh A; Berndt T; Kumar R Pediatr Nephrol; 2008 Aug; 23(8):1203-10. PubMed ID: 18288501 [TBL] [Abstract][Full Text] [Related]
16. The phosphatonins and the regulation of phosphate transport and vitamin D metabolism. Sommer S; Berndt T; Craig T; Kumar R J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):497-503. PubMed ID: 17224271 [TBL] [Abstract][Full Text] [Related]
17. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. Jonsson KB; Zahradnik R; Larsson T; White KE; Sugimoto T; Imanishi Y; Yamamoto T; Hampson G; Koshiyama H; Ljunggren O; Oba K; Yang IM; Miyauchi A; Econs MJ; Lavigne J; Jüppner H N Engl J Med; 2003 Apr; 348(17):1656-63. PubMed ID: 12711740 [TBL] [Abstract][Full Text] [Related]
18. Regulation of phosphate homeostasis in infants, children, and adolescents, and the role of phosphatonins in this process. Garabedian M Curr Opin Pediatr; 2007 Aug; 19(4):488-91. PubMed ID: 17630616 [TBL] [Abstract][Full Text] [Related]
19. X-Linked Hypophosphatemia and FGF23-Related Hypophosphatemic Diseases: Prospect for New Treatment. Kinoshita Y; Fukumoto S Endocr Rev; 2018 Jun; 39(3):274-291. PubMed ID: 29381780 [TBL] [Abstract][Full Text] [Related]
20. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. White KE; Larsson TE; Econs MJ Endocr Rev; 2006 May; 27(3):221-41. PubMed ID: 16467171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]