These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1495 related articles for article (PubMed ID: 15200956)

  • 1. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.
    Jones-Rhoades MW; Bartel DP
    Mol Cell; 2004 Jun; 14(6):787-99. PubMed ID: 15200956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
    Wang XJ; Reyes JL; Chua NH; Gaasterland T
    Genome Biol; 2004; 5(9):R65. PubMed ID: 15345049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa.
    Li Y; Li W; Jin YX
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):75-87. PubMed ID: 15685364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of endogenous small non-coding RNAs in Oryza sativa.
    Chen Z; Zhang J; Kong J; Li S; Fu Y; Li S; Zhang H; Li Y; Zhu Y
    Genetica; 2006; 128(1-3):21-31. PubMed ID: 17028937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification of novel microRNAs and targets in Brassica napus.
    Xie FL; Huang SQ; Guo K; Xiang AL; Zhu YY; Nie L; Yang ZM
    FEBS Lett; 2007 Apr; 581(7):1464-74. PubMed ID: 17367786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of microRNAs from rice.
    Sunkar R; Girke T; Jain PK; Zhu JK
    Plant Cell; 2005 May; 17(5):1397-411. PubMed ID: 15805478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of 20 microRNAs from Oryza sativa.
    Wang JF; Zhou H; Chen YQ; Luo QJ; Qu LH
    Nucleic Acids Res; 2004; 32(5):1688-95. PubMed ID: 15020705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational prediction and experimental verification of miRNAs in Panicum miliaceum L.
    Wu Y; Du J; Wang X; Fang X; Shan W; Liang Z
    Sci China Life Sci; 2012 Sep; 55(9):807-17. PubMed ID: 23015130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana.
    Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB
    Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing.
    Liu H; Qin C; Chen Z; Zuo T; Yang X; Zhou H; Xu M; Cao S; Shen Y; Lin H; He X; Zhang Y; Li L; Ding H; Lübberstedt T; Zhang Z; Pan G
    BMC Genomics; 2014 Jan; 15():25. PubMed ID: 24422852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational evidence for hundreds of non-conserved plant microRNAs.
    Lindow M; Krogh A
    BMC Genomics; 2005 Sep; 6():119. PubMed ID: 16159385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide identification of microRNA targets in rice.
    Li YF; Zheng Y; Addo-Quaye C; Zhang L; Saini A; Jagadeeswaran G; Axtell MJ; Zhang W; Sunkar R
    Plant J; 2010 Jun; 62(5):742-59. PubMed ID: 20202174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana.
    Li X; Zhang YZ
    Comput Biol Chem; 2005 Oct; 29(5):360-7. PubMed ID: 16221572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum).
    Li X; Hou Y; Zhang L; Zhang W; Quan C; Cui Y; Bian S
    Plant Signal Behav; 2014; 9(9):e29462. PubMed ID: 25763692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana.
    Qu G; Kruszka K; Plewka P; Yang SY; Chiou TJ; Jarmolowski A; Szweykowska-Kulinska Z; Echeverria M; Karlowski WM
    BMC Genomics; 2015 Nov; 16():1009. PubMed ID: 26607788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of conserved microRNAs and their targets in Chinese cabbage (Brassica rapa subsp. pekinensis).
    Wang J; Hou X; Yang X
    Genome; 2011 Dec; 54(12):1029-40. PubMed ID: 22111519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational identification of miRNAs and their targets in Phaseolus vulgaris.
    Han J; Xie H; Kong ML; Sun QP; Li RZ; Pan JB
    Genet Mol Res; 2014 Jan; 13(1):310-22. PubMed ID: 24535858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 75.