These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 15201040)

  • 41. Effects of allometric scaling and isokinetic testing methods on the relationship between countermovement jump and quadriceps torque and power.
    Pua YH; Koh MT; Teo YY
    J Sports Sci; 2006 Apr; 24(4):423-32. PubMed ID: 16492606
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The relationship between joint strength and standing vertical jump performance.
    Cheng KB
    J Appl Biomech; 2008 Aug; 24(3):224-33. PubMed ID: 18843152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Considerations that affect optimised simulation in a running jump for height.
    Wilson C; Yeadon MR; King MA
    J Biomech; 2007; 40(14):3155-61. PubMed ID: 17509598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo assessment of elbow flexor work and activation during stretch-shortening cycle tasks.
    Benoit DL; Dowling JJ
    J Electromyogr Kinesiol; 2006 Aug; 16(4):352-64. PubMed ID: 16263310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Manipulation of rest period length induces different causes of fatigue in vertical jumping.
    Pereira G; Morse C; Ugrinowitsch C; Rodacki A; Kokubun E; Fowler N
    Int J Sports Med; 2009 May; 30(5):325-30. PubMed ID: 19401949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle-foot-orthoses.
    Schmalz T; Blumentritt S; Drewitz H; Freslier M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):631-9. PubMed ID: 16567026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Why do Large Animals Never Actuate Their Jumps with Latch-Mediated Springs? Because They can Jump Higher Without Them.
    Sutton GP; Mendoza E; Azizi E; Longo SJ; Olberding JP; Ilton M; Patek SN
    Integr Comp Biol; 2019 Dec; 59(6):1609-1618. PubMed ID: 31399734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Necessary precautions in measuring correct vertical jumping height by means of force plate measurements.
    Vanrenterghem J; De Clercq D; Van Cleven P
    Ergonomics; 2001 Jun; 44(8):814-8. PubMed ID: 11450878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trade-offs between horizontal and vertical velocities during triple jumping and the effect on phase distances.
    Allen SJ; King MA; Yeadon MR
    J Biomech; 2013 Mar; 46(5):979-83. PubMed ID: 23351365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differences in the mechanics of takeoff in reverse and forward springboard somersaulting dives.
    King MA; Kong PW; Yeadon MR
    Sports Biomech; 2023 Feb; 22(2):255-267. PubMed ID: 35119354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimum take-off techniques for high and long jumps.
    Alexander RM
    Philos Trans R Soc Lond B Biol Sci; 1990 Jul; 329(1252):3-10. PubMed ID: 1976267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of a torque-driven model of jumping for height.
    King MA; Wilson C; Yeadon MR
    J Appl Biomech; 2006 Nov; 22(4):264-74. PubMed ID: 17293623
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions.
    Anderson FC; Pandy MG
    Comput Methods Biomech Biomed Engin; 1999; 2(3):201-231. PubMed ID: 11264828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional variability in the flight phase of one metre springboard forward dives.
    Sayyah M; Hiley MJ; King MA; Yeadon MR
    Hum Mov Sci; 2018 Jun; 59():234-243. PubMed ID: 29738942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increasing functional variability in the preparatory phase of the takeoff improves elite springboard diving performance.
    Barris S; Farrow D; Davids K
    Res Q Exerc Sport; 2014 Mar; 85(1):97-106. PubMed ID: 24749241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dependence of jumping performance on muscle properties when humans use only calf muscles for propulsion.
    Zajac FE; Wicke RW; Levine WS
    J Biomech; 1984; 17(7):513-23. PubMed ID: 6480625
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Twisting techniques used by competitive divers.
    Yeadon MR
    J Sports Sci; 1993 Aug; 11(4):337-42. PubMed ID: 8230393
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation of a Passive Knee Exoskeleton for Vertical Jump Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2859-2868. PubMed ID: 33226951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Representative learning design in springboard diving: Is dry-land training representative of a pool dive?
    Barris S; Davids K; Farrow D
    Eur J Sport Sci; 2013; 13(6):638-45. PubMed ID: 24251741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Factors determining the preference of takeoff leg in jumping.
    Friberg O; Kvist M
    Int J Sports Med; 1988 Oct; 9(5):349-52. PubMed ID: 3246472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.