BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15201142)

  • 1. Different modes of sodium-D-glucose cotransporter-mediated D-glucose uptake regulation in Caco-2 cells.
    Khoursandi S; Scharlau D; Herter P; Kuhnen C; Martin D; Kinne RK; Kipp H
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C1041-7. PubMed ID: 15201142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More than apical: Distribution of SGLT1 in Caco-2 cells.
    Kipp H; Khoursandi S; Scharlau D; Kinne RK
    Am J Physiol Cell Physiol; 2003 Oct; 285(4):C737-49. PubMed ID: 12773314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1.
    Walgren RA; Lin JT; Kinne RK; Walle T
    J Pharmacol Exp Ther; 2000 Sep; 294(3):837-43. PubMed ID: 10945831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells.
    Matosin-Matekalo M; Mesonero JE; Delezay O; Poiree JC; Ilundain AA; Brot-Laroche E
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):633-40. PubMed ID: 9729472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression.
    Turner JR; Lencer WI; Carlson S; Madara JL
    J Biol Chem; 1996 Mar; 271(13):7738-44. PubMed ID: 8631815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tripeptides of RS1 (RSC1A1) inhibit a monosaccharide-dependent exocytotic pathway of Na+-D-glucose cotransporter SGLT1 with high affinity.
    Vernaleken A; Veyhl M; Gorboulev V; Kottra G; Palm D; Burckhardt BC; Burckhardt G; Pipkorn R; Beier N; van Amsterdam C; Koepsell H
    J Biol Chem; 2007 Sep; 282(39):28501-28513. PubMed ID: 17686765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of streptozotocin diabetes on sodium-glucose transporter (SGLT1) expression and function in rat jejunal and ileal villus-attached enterocytes.
    Debnam ES; Smith MW; Sharp PA; Srai SK; Turvey A; Keable SJ
    Pflugers Arch; 1995 Jun; 430(2):151-9. PubMed ID: 7675626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic expression and regulation of Na(+)-D-glucose cotransporter in jejunum of domestic chicken.
    Barfull A; Garriga C; Mitjans M; Planas JM
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G559-64. PubMed ID: 11842007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural and functional changes in the jejunal epithelium of spontaneously hypertensive rats.
    Sánchez-Aguayo I; Torreblanca J; de La Hermosa ML; Mate A; Planas JM; Vázquez CM
    Life Sci; 2001 Mar; 68(18):2105-13. PubMed ID: 11324715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plasma membrane-associated protein RS1 decreases transcription of the transporter SGLT1 in confluent LLC-PK1 cells.
    Korn T; Kühlkamp T; Track C; Schatz I; Baumgarten K; Gorboulev V; Koepsell H
    J Biol Chem; 2001 Nov; 276(48):45330-40. PubMed ID: 11562363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2.
    Barrenetxe J; Sánchez O; Barber A; Gascón S; Rodríguez-Yoldi MJ; Lostao MP
    Cytokine; 2013 Oct; 64(1):181-7. PubMed ID: 23910014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGLT1-Mediated Transport in Caco-2 Cells Is Highly Dependent on Cell Bank Origin.
    Steffansen B; Pedersen MDL; Laghmoch AM; Nielsen CU
    J Pharm Sci; 2017 Sep; 106(9):2664-2670. PubMed ID: 28454747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons.
    Poppe R; Karbach U; Gambaryan S; Wiesinger H; Lutzenburg M; Kraemer M; Witte OW; Koepsell H
    J Neurochem; 1997 Jul; 69(1):84-94. PubMed ID: 9202297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of SGLT1 expression in response to Na(+) intake.
    Barfull A; Garriga C; Tauler A; Planas JM
    Am J Physiol Regul Integr Comp Physiol; 2002 Mar; 282(3):R738-43. PubMed ID: 11832394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous flow electrophoresis for study of membrane protein compartments. Focus on "More than apical: distribution of SGLT1 in Caco-2 cells".
    Cuppoletti J
    Am J Physiol Cell Physiol; 2003 Oct; 285(4):C735-6. PubMed ID: 12958026
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of SGLT1-mediated glucose transport in Caco-2 cell monolayers, and absence of its regulation by sugar or epinephrine.
    Kulkarni CP; Thevelein JM; Luyten W
    Eur J Pharmacol; 2021 Apr; 897():173925. PubMed ID: 33545159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose sensing in the intestinal epithelium.
    Dyer J; Vayro S; King TP; Shirazi-Beechey SP
    Eur J Biochem; 2003 Aug; 270(16):3377-88. PubMed ID: 12899695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of actin in EGF-induced alterations in enterocyte SGLT1 expression.
    Chung BM; Wong JK; Hardin JA; Gall DG
    Am J Physiol; 1999 Feb; 276(2):G463-9. PubMed ID: 9950820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of the Na+-D-glucose cotransporter SGLT1 in the blood-brain barrier.
    Elfeber K; Köhler A; Lutzenburg M; Osswald C; Galla HJ; Witte OW; Koepsell H
    Histochem Cell Biol; 2004 Mar; 121(3):201-7. PubMed ID: 14986005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Regulatory mechanisms of intracellular distribution of Na+-dependent glucose transporter and the role in recovery from cellular injury].
    Ikari A
    Yakugaku Zasshi; 2004 Dec; 124(12):959-64. PubMed ID: 15577265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.