These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 15201166)

  • 1. From genetics to cellular function using computational biology.
    Rudy Y
    Ann N Y Acad Sci; 2004 May; 1015():261-70. PubMed ID: 15201166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue.
    Saucerman JJ; Healy SN; Belik ME; Puglisi JL; McCulloch AD
    Circ Res; 2004 Dec; 95(12):1216-24. PubMed ID: 15528464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of arrhythmias.
    Shah M; Akar FG; Tomaselli GF
    Circulation; 2005 Oct; 112(16):2517-29. PubMed ID: 16230503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [From gene to disease; ion channel proteins and the long QT syndrome].
    Wilde AA; van Langen IM
    Ned Tijdschr Geneeskd; 2000 Nov; 144(46):2205-7. PubMed ID: 11103258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic angiotensin II stimulation in the heart produces an acquired long QT syndrome associated with IK1 potassium current downregulation.
    Domenighetti AA; Boixel C; Cefai D; Abriel H; Pedrazzini T
    J Mol Cell Cardiol; 2007 Jan; 42(1):63-70. PubMed ID: 17070838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia.
    Clancy CE; Rudy Y
    Nature; 1999 Aug; 400(6744):566-9. PubMed ID: 10448858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations.
    Remme CA; Wilde AA; Bezzina CR
    Trends Cardiovasc Med; 2008 Apr; 18(3):78-87. PubMed ID: 18436145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HERG mutation predicts short QT based on channel kinetics but causes long QT by heterotetrameric trafficking deficiency.
    Paulussen AD; Raes A; Jongbloed RJ; Gilissen RA; Wilde AA; Snyders DJ; Smeets HJ; Aerssens J
    Cardiovasc Res; 2005 Aug; 67(3):467-75. PubMed ID: 15958262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart.
    Bottino D; Penland RC; stamps A; Traebert M; Dumotier B; Georgiva A; Helmlinger G; Lett GS
    Prog Biophys Mol Biol; 2006; 90(1-3):414-43. PubMed ID: 16321428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Electrocardiogram in channel disorders].
    González-Hermosillo JA
    Arch Cardiol Mex; 2004; 74 Suppl 1():S79-83. PubMed ID: 15216752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant negative suppression of Rad leads to QT prolongation and causes ventricular arrhythmias via modulation of L-type Ca2+ channels in the heart.
    Yada H; Murata M; Shimoda K; Yuasa S; Kawaguchi H; Ieda M; Adachi T; Murata M; Ogawa S; Fukuda K
    Circ Res; 2007 Jul; 101(1):69-77. PubMed ID: 17525370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mutations in the heart's pacemaker channels--a new cause of sick sinus node syndrome and long-QT syndrome].
    Vitved T; Lianee HT; Støvring B; Sigurd BM; Christiansen M
    Ugeskr Laeger; 2008 Mar; 170(11):929-33. PubMed ID: 18397618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The G314S KCNQ1 mutation exerts a dominant-negative effect on expression of KCNQ1 channels in oocytes.
    Li W; Du R; Wang QF; Tian L; Yang JG; Song ZF
    Biochem Biophys Res Commun; 2009 May; 383(2):206-9. PubMed ID: 19348785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antidepressants: their effects on cardiac channels, QT prolongation and Torsade de Pointes.
    Sala M; Coppa F; Cappucciati C; Brambilla P; d'Allio G; Caverzasi E; Barale F; De Ferrari GM
    Curr Opin Investig Drugs; 2006 Mar; 7(3):256-63. PubMed ID: 16555686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the genes KCND2 and KCND3 encoding the ion channels Kv4.2 and Kv4.3, conducting the cardiac fast transient outward current (ITO,f), are not a frequent cause of long QT syndrome.
    Frank-Hansen R; Larsen LA; Andersen P; Jespersgaard C; Christiansen M
    Clin Chim Acta; 2005 Jan; 351(1-2):95-100. PubMed ID: 15563876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic mechanism of the enhanced rate-dependent QT shortening in the R1623Q mutant of the LQT3 syndrome.
    Oginosawa Y; Nagatomo T; Abe H; Makita N; Makielski JC; Nakashima Y
    Cardiovasc Res; 2005 Jan; 65(1):138-47. PubMed ID: 15621041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall.
    Weiss DL; Seemann G; Sachse FB; Dössel O
    Europace; 2005 Sep; 7 Suppl 2():105-17. PubMed ID: 16102508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches.
    Xia L; Zhang Y; Zhang H; Wei Q; Liu F; Crozier S
    Physiol Meas; 2006 Nov; 27(11):1125-42. PubMed ID: 17028406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic defects, ionic currents and electrocardiographic alterations.
    Rudy Y
    Ann Med; 2004; 36 Suppl 1():15-21. PubMed ID: 15176419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic basis of Brugada syndrome: a mutation update.
    Hedley PL; Jørgensen P; Schlamowitz S; Moolman-Smook J; Kanters JK; Corfield VA; Christiansen M
    Hum Mutat; 2009 Sep; 30(9):1256-66. PubMed ID: 19606473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.