BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

699 related articles for article (PubMed ID: 15201218)

  • 1. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis.
    Grimaldi A; Tettamanti G; Martin BL; Gaffield W; Pownall ME; Hughes SM
    Development; 2004 Jul; 131(14):3249-62. PubMed ID: 15201218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis.
    Coutelle O; Blagden CS; Hampson R; Halai C; Rigby PW; Hughes SM
    Dev Biol; 2001 Aug; 236(1):136-50. PubMed ID: 11456450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non conservation of function for the evolutionarily conserved prdm1 protein in the control of the slow twitch myogenic program in the mouse embryo.
    Vincent SD; Mayeuf A; Niro C; Saitou M; Buckingham M
    Mol Biol Evol; 2012 Oct; 29(10):3181-91. PubMed ID: 22522309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hedgehog can drive terminal differentiation of amniote slow skeletal muscle.
    Li X; Blagden CS; Bildsoe H; Bonnin MA; Duprez D; Hughes SM
    BMC Dev Biol; 2004 Jul; 4():9. PubMed ID: 15238161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Early stages of myogenesis as seen through the action of the myf-5 gene].
    Buckingham M
    C R Seances Soc Biol Fil; 1997; 191(1):43-54. PubMed ID: 9181127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo.
    Roy S; Wolff C; Ingham PW
    Genes Dev; 2001 Jun; 15(12):1563-76. PubMed ID: 11410536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage.
    Ludolph DC; Neff AW; Mescher AL; Malacinski GM; Parker MA; Smith RC
    Dev Biol; 1994 Nov; 166(1):18-33. PubMed ID: 7525388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis.
    Noden DM; Marcucio R; Borycki AG; Emerson CP
    Dev Dyn; 1999 Oct; 216(2):96-112. PubMed ID: 10536051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of somitic expression of tenascin in Xenopus embryos by myogenic factors and Brachyury.
    Umbhauer M; Riou JF; Smith JC; Boucaut JC
    Dev Dyn; 1994 Aug; 200(4):269-77. PubMed ID: 7527682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle growth patterns and regulation during fish ontogeny.
    Rescan PY
    Gen Comp Endocrinol; 2005 May; 142(1-2):111-6. PubMed ID: 15862555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hedgehog acts directly on the zebrafish dermomyotome to promote myogenic differentiation.
    Feng X; Adiarte EG; Devoto SH
    Dev Biol; 2006 Dec; 300(2):736-46. PubMed ID: 17046741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into skeletal muscle development and growth in teleost fishes.
    Rescan PY
    J Exp Zool B Mol Dev Evol; 2008 Nov; 310(7):541-8. PubMed ID: 18666123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myogenic specification of somites is mediated by diffusible factors.
    Buffinger N; Stockdale FE
    Dev Biol; 1995 May; 169(1):96-108. PubMed ID: 7750661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus muscle development: from primary to secondary myogenesis.
    Chanoine C; Hardy S
    Dev Dyn; 2003 Jan; 226(1):12-23. PubMed ID: 12508220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six1a is required for the onset of fast muscle differentiation in zebrafish.
    Bessarab DA; Chong SW; Srinivas BP; Korzh V
    Dev Biol; 2008 Nov; 323(2):216-28. PubMed ID: 18789916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of myogenic regulatory factors during muscle development of Xenopus: myogenin mRNA accumulation is limited strictly to secondary myogenesis.
    Nicolas N; Gallien CL; Chanoine C
    Dev Dyn; 1998 Nov; 213(3):309-21. PubMed ID: 9825866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish.
    Hammond CL; Hinits Y; Osborn DP; Minchin JE; Tettamanti G; Hughes SM
    Dev Biol; 2007 Feb; 302(2):504-21. PubMed ID: 17094960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish.
    Currie PD; Ingham PW
    Nature; 1996 Aug; 382(6590):452-5. PubMed ID: 8684485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow muscle regulates the pattern of trunk neural crest migration in zebrafish.
    Honjo Y; Eisen JS
    Development; 2005 Oct; 132(20):4461-70. PubMed ID: 16162652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of two MyoD genes in fast and slow muscles of gilthead seabream ( Sparus aurata).
    Tan X; Du SJ
    Dev Genes Evol; 2002 Jun; 212(5):207-17. PubMed ID: 12070611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.