BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15201302)

  • 1. Wing hair sensilla underlying aimed hindleg scratching of the locust.
    Page KL; Matheson T
    J Exp Biol; 2004 Jul; 207(Pt 15):2691-703. PubMed ID: 15201302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust.
    Newland PL
    J Comp Neurol; 1991 Oct; 312(4):493-508. PubMed ID: 1761738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
    Burrows M; Newland PL
    J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect.
    Newland PL; Rogers SM; Gaaboub I; Matheson T
    J Comp Neurol; 2000 Sep; 425(1):82-96. PubMed ID: 10940944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of mechanosensory afferents from different classes of exteroceptors onto spiking local interneurons in the locust.
    Burrows M; Newland PL
    J Neurosci; 1994 May; 14(5 Pt 2):3341-50. PubMed ID: 8182477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Features of the receptors of the alar system of locusts which have lost their ability to fly].
    Kniazeva NI
    Arkh Anat Gistol Embriol; 1986 Feb; 90(2):33-9. PubMed ID: 3707362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hindleg targeting during scratching in the locust.
    Matheson T
    J Exp Biol; 1997; 200(Pt 1):93-100. PubMed ID: 9317404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The morphology of a population of thoracic intersegmental interneurones in the locust.
    Laurent G
    J Comp Neurol; 1987 Feb; 256(3):412-29. PubMed ID: 3571514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanosensory pegs constitute stridulatory files in grasshoppers.
    Hustert R; Lodde E; Gnatzy W
    J Comp Neurol; 1999 Aug; 410(3):444-56. PubMed ID: 10404411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional role of airflow-sensing hairs on the bat wing.
    Sterbing-D'Angelo SJ; Chadha M; Marshall KL; Moss CF
    J Neurophysiol; 2017 Feb; 117(2):705-712. PubMed ID: 27852729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A topographic map of sensory cell terminal arborizations in the cricket CNS; correlation with birthday and position in a sensory array.
    Murphey RK; Jacklet A; Schuster L
    J Comp Neurol; 1980 May; 191(1):53-64. PubMed ID: 7400391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and deflection properties of bat wing sensory hairs: scanning electron microscopy, laser scanning vibrometry, and mechanics model.
    Sterbing-D'Angelo SJ; Liu H; Yu M; Moss CF
    Bioinspir Biomim; 2016 Aug; 11(5):056008. PubMed ID: 27545727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contralateral coordination and retargeting of limb movements during scratching in the locust.
    Matheson T
    J Exp Biol; 1998 Jul; 201 (Pt 13)():2021-32. PubMed ID: 9622574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitat-related divergence among tailfan sensory systems in reptantian Decapod crustaceans.
    Bock NL; Paul DH
    Brain Behav Evol; 2009; 73(3):188-205. PubMed ID: 19494487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of efferent octopaminergic thoracic unpaired median neurons in the locust to visual and mechanosensory signals.
    Field LH; Duch C; Pflüger HJ
    J Insect Physiol; 2008 Jan; 54(1):240-54. PubMed ID: 18021797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioural phase change in the Australian plague locust, Chortoicetes terminifera, is triggered by tactile stimulation of the antennae.
    Cullen DA; Sword GA; Dodgson T; Simpson SJ
    J Insect Physiol; 2010 Aug; 56(8):937-42. PubMed ID: 20438734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of nitric oxide on the responsiveness of tactile hairs.
    Schuppe H; Newland PL
    Invert Neurosci; 2011 Dec; 11(2):85-90. PubMed ID: 21573755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative and functional morphology of wing coupling structures in Trichoptera: Annulipalpia.
    Stocks IC
    J Morphol; 2010 Feb; 271(2):152-68. PubMed ID: 19697420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of the tibia and somatotopy of regenerated hair sensilla in Schistocerca gregaria (Forskål).
    Lüdke J; Lakes-Harlan R
    Arthropod Struct Dev; 2008 May; 37(3):210-20. PubMed ID: 18342264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.