BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15201434)

  • 41. Mathematical model for early development of the sea urchin embryo.
    Ciliberto A; Tyson JJ
    Bull Math Biol; 2000 Jan; 62(1):37-59. PubMed ID: 10824420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 2-(Naphthalene-1-yl)-6-pyrrolidinyl-4-quinazolinone inhibits skin cancer M21 cell proliferation through aberrant expression of microtubules and the cell cycle.
    Wu YC; Hour MJ; Leung WC; Wu CY; Liu WZ; Chang YH; Lee HZ
    J Pharmacol Exp Ther; 2011 Sep; 338(3):942-51. PubMed ID: 21652781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formulated glyphosate activates the DNA-response checkpoint of the cell cycle leading to the prevention of G2/M transition.
    Marc J; Bellé R; Morales J; Cormier P; Mulner-Lorillon O
    Toxicol Sci; 2004 Dec; 82(2):436-42. PubMed ID: 15375296
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microinjection of an antibody against the cysteine-protease involved in male chromatin remodeling blocks the development of sea urchin embryos at the initial cell cycle.
    Puchi M; Quiñones K; Concha C; Iribarren C; Bustos P; Morin V; Genevière AM; Imschenetzky M
    J Cell Biochem; 2006 May; 98(2):335-42. PubMed ID: 16408295
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs.
    Pesando D; Pesci-Bardon C; Huitorel P; Girard JP
    Eur J Cell Biol; 1999 Dec; 78(12):903-10. PubMed ID: 10669109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E.
    Oulhen N; Salaün P; Cosson B; Cormier P; Morales J
    J Cell Sci; 2007 Feb; 120(Pt 3):425-34. PubMed ID: 17213333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Peak of H3T3 Phosphorylation Occurs in Synchrony with Mitosis in Sea Urchin Early Embryos.
    Feizbakhsh O; Pontheaux F; Glippa V; Morales J; Ruchaud S; Cormier P; Roch F
    Cells; 2020 Apr; 9(4):. PubMed ID: 32272587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos.
    Chassé H; Mulner-Lorillon O; Boulben S; Glippa V; Morales J; Cormier P
    PLoS One; 2016; 11(3):e0150318. PubMed ID: 26962866
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinesin is associated with a nonmicrotubule component of sea urchin mitotic spindles.
    Leslie RJ; Hird RB; Wilson L; McIntosh JR; Scholey JM
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2771-5. PubMed ID: 3106977
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell cycle control proteins are second messenger targets at fertilization in sea-urchin eggs.
    Whitaker MJ
    J Reprod Fertil Suppl; 1990; 42():199-204. PubMed ID: 2150204
    [No Abstract]   [Full Text] [Related]  

  • 51. Sharp dose- and time-dependent toxicity of mercuric chloride at the cellular level in sea urchin embryos.
    Marc J; Maguer C; Bellé R; Mulner-Lorillon O
    Arch Toxicol; 2002 Jul; 76(7):388-91. PubMed ID: 12111002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Staurosporine overrides checkpoints for mitotic onset in BHK cells.
    Tam SW; Schlegel R
    Cell Growth Differ; 1992 Nov; 3(11):811-7. PubMed ID: 1467308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of 6-dimethylaminopurine on the length of the cell cycle and on the state of phosphorylation of putative intermediate filament proteins in sea urchin embryos.
    St-Pierre J; Vincent M; Dufresne L
    Cell Motil Cytoskeleton; 1994; 29(2):131-40. PubMed ID: 7820863
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dependency of 2-methoxyestradiol-induced mitochondrial apoptosis on mitotic spindle network impairment and prometaphase arrest in human Jurkat T cells.
    Lee ST; Lee JY; Han CR; Kim YH; Jun do Y; Taub D; Kim YH
    Biochem Pharmacol; 2015 Apr; 94(4):257-69. PubMed ID: 25732194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control mechanisms of the cell cycle: role of the spatial arrangement of spindle components in the timing of mitotic events.
    Sluder G; Begg DA
    J Cell Biol; 1983 Sep; 97(3):877-86. PubMed ID: 6885924
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium-induced chromatin condensation and cyclin phosphorylation during chromatin condensation cycles in ammonia-activated sea urchin eggs.
    Patel R; Twigg J; Crossley I; Golsteyn R; Whitaker M
    J Cell Sci Suppl; 1989; 12():129-44. PubMed ID: 2534555
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of heavy water (D2O) on the length of the mitotic period in developing sea urchin eggs.
    Takahashi TC; Sato H
    Cell Struct Funct; 1983 Dec; 8(4):357-65. PubMed ID: 6201297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sea urchin elongation factor 1delta (EF1delta) and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at M phase.
    Boulben S; Monnier A; Le Breton M; Morales J; Cormier P; Bellé R; Mulner-Lorillon O
    Cell Mol Life Sci; 2003 Oct; 60(10):2178-88. PubMed ID: 14618264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Caffeine-induced monaster cycling in fertilized eggs of the sea urchin Strongylocentrotus purpuratus.
    Harris P
    Dev Biol; 1983 Apr; 96(2):277-84. PubMed ID: 6832472
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies on macrocyclic lactone antibiotics. XI. Anti-mitotic and anti-tubulin activity of new antitumor antibiotics, rhizoxin and its homologues.
    Takahashi M; Iwasaki S; Kobayashi H; Okuda S; Murai T; Sato Y; Haraguchi-Hiraoka T; Nagano H
    J Antibiot (Tokyo); 1987 Jan; 40(1):66-72. PubMed ID: 3606749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.