BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 15201901)

  • 21. Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process.
    Venclovas C; Colvin ME; Thelen MP
    Protein Sci; 2002 Oct; 11(10):2403-16. PubMed ID: 12237462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unexpected new insights into DNA clamp loaders: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage.
    Li H; O'Donnell M; Kelch B
    Bioessays; 2022 Nov; 44(11):e2200154. PubMed ID: 36116108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the role of PCNA-DNA contacts during clamp loading.
    McNally R; Bowman GD; Goedken ER; O'Donnell M; Kuriyan J
    BMC Struct Biol; 2010 Jan; 10():3. PubMed ID: 20113510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast 9-1-1 complex acts as a sliding clamp for DNA synthesis by DNA polymerase ε.
    Acharya N; Prakash L; Prakash S
    J Biol Chem; 2023 Jan; 299(1):102727. PubMed ID: 36410434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes.
    Venclovas C; Thelen MP
    Nucleic Acids Res; 2000 Jul; 28(13):2481-93. PubMed ID: 10871397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of individual proliferating cell nuclear antigen-DNA contacts on clamp loading and function on DNA.
    Zhou Y; Hingorani MM
    J Biol Chem; 2012 Oct; 287(42):35370-35381. PubMed ID: 22902629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication.
    Ohashi E; Tsurimoto T
    Adv Exp Med Biol; 2017; 1042():135-162. PubMed ID: 29357057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monomeric yeast PCNA mutants are defective in interacting with and stimulating the ATPase activity of RFC.
    Ionescu CN; Shea KA; Mehra R; Prundeanu L; McAlear MA
    Biochemistry; 2002 Oct; 41(43):12975-85. PubMed ID: 12390024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stepwise loading of yeast clamp revealed by ensemble and single-molecule studies.
    Kumar R; Nashine VC; Mishra PP; Benkovic SJ; Lee TH
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19736-41. PubMed ID: 21041673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multistep loading of a DNA sliding clamp onto DNA by replication factor C.
    Schrecker M; Castaneda JC; Devbhandari S; Kumar C; Remus D; Hite RK
    Elife; 2022 Aug; 11():. PubMed ID: 35939393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen.
    Gomes XV; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34768-75. PubMed ID: 11432853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading.
    Tainer JA; McCammon JA; Ivanov I
    J Am Chem Soc; 2010 Jun; 132(21):7372-8. PubMed ID: 20455582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanical properties of PCNA: implications for the loading and function of a DNA sliding clamp.
    Adelman JL; Chodera JD; Kuo IF; Miller TF; Barsky D
    Biophys J; 2010 Jun; 98(12):3062-9. PubMed ID: 20550919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryo-EM reveals a nearly complete PCNA loading process and unique features of the human alternative clamp loader CTF18-RFC.
    He Q; Wang F; O'Donnell ME; Li H
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2319727121. PubMed ID: 38669181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen.
    Kazmirski SL; Zhao Y; Bowman GD; O'donnell M; Kuriyan J
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13801-6. PubMed ID: 16169903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Replication factor C is a more effective proliferating cell nuclear antigen (PCNA) opener than the checkpoint clamp loader, Rad24-RFC.
    Thompson JA; Marzahn MR; O'Donnell M; Bloom LB
    J Biol Chem; 2012 Jan; 287(3):2203-9. PubMed ID: 22115746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint.
    Majka J; Burgers PM
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2249-54. PubMed ID: 12604797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reverse-chaperoning activity of an AAA+ protein.
    Liu C; McKinney MC; Chen YH; Earnest TM; Shi X; Lin LJ; Ishino Y; Dahmen K; Cann IK; Ha T
    Biophys J; 2011 Mar; 100(5):1344-52. PubMed ID: 21354408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Destabilized PCNA trimers suppress defective Rfc1 proteins in vivo and in vitro.
    Beckwith WH; Sun Q; Bosso R; Gerik KJ; Burgers PM; McAlear MA
    Biochemistry; 1998 Mar; 37(11):3711-22. PubMed ID: 9521689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases.
    Yao N; Turner J; Kelman Z; Stukenberg PT; Dean F; Shechter D; Pan ZQ; Hurwitz J; O'Donnell M
    Genes Cells; 1996 Jan; 1(1):101-13. PubMed ID: 9078370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.